Поэтому такая подводная лодка все время держит гидроакустический контакт с обеспечивающим надводным судном, снабженным, как правило, средствами точного кораблевождения.
На больших лодках можно установить инерциальную навигационную систему. Несмотря на то что принцип действия этой системы чрезвычайно прост, ее создание потребовало привлечения самых последних достижений в области гироскопических приборов, механики, вакуумной и вычислительной техники.
Представим себе, что нам точно известно исходное место движения подводной лодки. Переход от состояния покоя или равномерного прямолинейного движения к движению с другой скоростью невозможен без ускорений. Ускорения можно точно замерить с помощью инерциальных датчиков (акселерометров) на основе второго закона механики. По ускорениям можно рассчитать скорости и, следовательно, пройденное расстояние. Все эти операции автоматически выполняет сложный и пока относительно громоздкий комплекс аппаратуры, который и называется инерциальной системой.
Ее главное преимущество — в полной независимости от внешних источников навигационной информации. Значит, подводная лодка, определив перед погружением свое место, например радионавигационным способом или с помощью навигационных спутников Земли, может плавать довольно продолжительное время, не всплывая. При этом разница между счислимым (расчетным) и фактическим местом увеличивается незначительно. Например, во время трансполярного перехода атомной подводной лодки «Наутилус» (1958 год) ошибка в расчетном месте достигла 10 миль после прохождения подо льдами расстояния, равного 1830 милям (ошибка чуть более 0,5 процента).
Другой вид современной навигационной аппаратуры — гидроакустические, иначе доплеровские лаги. Входящая в состав лага электронно-вычислительная машина вычисляет по скорости величину пройденного расстояния относительно дна. Таким образом — и это очень важно — учитываются влияние течений и боковые перемещения. Принцип действия лага основан на эффекте Доплера[8]: скорость подводной лодки измеряется по разности частот гидроакустических сигналов, излучаемых четырьмя преобразователями под углом 80 градусов к вертикали, и их отражений от морского дна. Гидроакустические лаги дают ошибки при определении малых скоростей (до 2 узлов). А это как раз находится в диапазоне экономической скорости большинства научно-исследовательских подводных лодок.
Малые лодки доставляются обычно в район исследований на борту надводной обеспечивающей плавбазы или на буксире. Когда искали водородную бомбу у берегов Испании, малые лодки перебрасывали на транспортных самолетах, а потом перегружали на борт надводного судна. Ограниченный запас энергии и плохие мореходные качества для плавания на поверхности заставляют малую лодку полностью зависеть от обеспечивающего судна-носителя. Причем спуск подлодки на воду и подъем с воды в штиль при наличии спуско-подъемного устройства не представляют трудности. Но уже при небольшом волнении перегрузочная операция перерастает в спасательную. Плавбаза должна подойти к раскачивающейся и заливаемой волнами лодке, закрепить подъемный трос, бережно поднять лодку, аккуратно поставить в гнездо на неустойчивой палубе и транспортировать к следующей точке погружения. На малых лодках численность экипажа невелика, а длительность одного погружения не превышает нескольких часов.
Естественно, что так называемой обитаемости на таких лодках большого значения не придается. Исследователи-гидронавты либо сидят как в малолитражном автомобиле, либо лежат на амортизирующих матрасах, приблизившись лицом к иллюминатору. Углекислый газ удаляется химпоглотителем, кислород из баллонов подается в атмосферу лодки через определенное время. Проблемы питания и санитарии сведены к минимуму.
Другое дело — большие подводные лодки, способные находиться под водой неделями. Тогда обитаемость становится в один ряд с оснащением научной аппаратурой и другими техническими характеристиками. Она превращается в одно из важнейших качеств исследовательской подводной лодки, поскольку прямо влияет на работоспособность экипажа. В идеале человек в герметичном корпусе лодки должен иметь возможность нормально дышать, принимать пищу, выполнять ту или иную работу и отдыхать, то есть делать все то, что он обычно делает на суше. Если квалифицировать деятельность гидронавта под водой как обычную работу в необычных условиях, то для ее нормального выполнения нужно всемерно снижать необычность окружающей обстановки. Здесь и создание нужного микроклимата, и поддержание неизменного газового состава воздуха, и снижение шумности, и рациональная организация труда, отдыха, питания и даже медицинского обслуживания. Для исследовательской подлодки с атомным источником энергии появляется еще один, пожалуй, самый важный фактор — безопасная радиационная обстановка в отсеках.
8