Выбрать главу

По отношению к манёвру вектор целей – функция времени, т.е. идеальная траектория и хронологический график прохождения контрольных точек на ней. Множество допустимых векторов ошибки – коридор допустимых отклонений от идеальной траектории с учетом отклонений по времени в прохождении контрольных точек на идеальной траектории.

Манёвр может быть и условно устойчивым, то есть замкнутую систему удаётся перевести в конечное состояние с приемлемой точностью, но возмущающие воздействия (в том числе конфликтное управление) в процессе маневра плохо предсказуемы до его начала; вследствие этого траектория перехода должна корректироваться в ходе маневра с учётом реальных отклонений. Манёвр может быть завершён при условии, что в течение перехода возмущающие воздействия не превысят компенсационных возможностей замкнутой системы. Это же касается и ситуации конфликтного управления одним объектом со стороны нескольких субъектов.

Примером такого рода условно устойчивого манёвра является любое плавание эпохи парусного флота «из пункта А в пункт Б»: совершить переход – шансы есть, но об аварийности, сроках и маршруте можно говорить только в вероятностном смысле о будущем и в статистическом смысле – о прошлом. Политика также даёт множество примеров такого рода условно устойчивых манёвров.

То есть, безусловно устойчивый манёвр имеет вероятность успешного завершения, обусловленную возмущающими воздействиями на замкнутую систему в его ходе, равную единице, которая однако может быть сведена к нулевой вероятностной предопределённости низкой квалификацией управленцев [43]. Вероятность приемлемого завершения условно устойчивого манёвра подчинена объективно вероятностным предопределённостям возмущающего воздействия, характеристикам объекта, а субъективно – высокая квалификация субъекта-управленца может вытянуть до единичной предопределённости низкую вероятность осуществления условно устойчивого маневра.

В этой формулировке под «возмущающим воздействием» следует понимать как внешние воздействия среды, включая и конфликты управления, так и внутренние изменения (поломки и т.п.) в замкнутой системе. Этот пример также иллюстрирует соотношение понятий «устойчивость в смысле ограниченности отклонений» и в смысле предсказуемости поведения.

К манёврам перехода предъявляются разные требования, но наиболее часто предъявляется требование плавности, безударности, т.е. отсутствия импульсных (ударных) нагрузок на замкнутую систему в процессе её движения по идеальной траектории манёвра с допустимыми отклонениями в пространстве параметров. В математической интерпретации это требование эквивалентно двукратной дифференцируемости по времени вектора состояния замкнутой системы и наложению ограничений на вектора-производные («скорость», «ускорение») во всём пространстве коридора допустимых отклонений на протяжении идеальной траектории. Снятие этого требования – перенос задачи управления в область приложений теории катастроф.

Теория катастроф рассматривает процессы, в которых плавное изменение параметров системы прерывается их скачкообразным изменением (предсказуемым или заранее неизвестным), после чего система оказывается в другом режиме существования или разрушается.

Этот скачок теория называет «катастрофой» (далее катастрофа в кавычках – именно в этом смысле), что в большинстве случаев практических приложений правильно, поскольку ударный характер нагрузки на замкнутую систему может её повредить, разрушить или быть неприемлемым по каким-то иным причинам. Сама теория «катастроф» родилась из обобщающего анализа реальных катастроф в их математическом описании. Режим, в котором оказывается система после «катастрофы», может быть предсказуем – либо однозначно, либо в вероятностно-статистическом смысле, либо непредсказуем.

Типичный пример явлений, изучаемых теорией «катастроф», – переход колебательного процесса из одной потенциальной ямы в другую потенциальную яму: так в шторм корабль испытывает качку относительно одного устойчиво вертикального положения – нормального: днищем – вниз, палубой – вверх. Плавное увеличение амплитудных значений крена при качке может привести к внезапному опрокидыванию корабля кверху днищем в течение интервала времени менее полупериода качки (секунды) в процессе усиления шторма, обледенения и т.п. Но и опрокинувшийся корабль может не сразу же пойти ко дну, а может ещё длительное время оставаться на плаву кверху днищем, по-прежнему испытывая качку относительно своего другого, также устойчиво вертикального положения, но уже не нормального.

«Неплавная» траектория может быть проекцией вполне «плавной» траектории, лежащей в пространстве параметров большей размерности, в подпространство меньшей размерности. Область потенциально устойчивого по предсказуемости управления в пространстве параметров вектора состояния по отношению к конкретной замкнутой системе – объективная данность. В ней лежит множество объективно возможных траекторий манёвров; и множество объективно невозможных. Во множестве объективно возможных траекторий можно выделить подмножество траекторий, на которых лежат точки «катастроф». Это могут быть точки нарушения двукратной дифференцируемости по времени вектора состояния; точки превышения ограничений, налагаемых на вектора-производные; точки изменения меры предсказуемости (например, точки ветвления траекторий в вероятностном смысле); точки на границах между двумя потенциальными ямами и т.п.