Выбрать главу
НАЙТИ ДЕНЬ НЕДЕЛИ ДЛЯ ЛЮБОЙ ЗАДАННОЙ ДАТЫ [11] 

Натолкнувшись на следующий способ вычисления в уме дня недели для любой заданной даты, шлю его Вам в надежде, что он заинтересует некоторых из Ваших читателей. Сам я считаю медленно; и поскольку, как я обнаружил, среднее время, затрачиваемое мной на решение всех таких задач, составляет двадцать секунд, то для тех, кто считает быстро, хватит, несомненно, и пятнадцати.

Берём заданную дату четырьмя частями, а именно: количество сотен, количество лет сверх, месяц, день.

Вычисляем следующие четыре величины, прибавляя каждую, по её нахождении, к общей сумме предыдущих величин. Если какая-то величина либо такой итог превышает 7, делим на 7 и сохраняем один лишь остаток.

Член «сотни». — Для старого стиля (который закончился 2 сентября 1752 года), вычитаем из 18. Для нового стиля (который начался 14 сентября [того же года] [12]) делим на 4, избыток отнимаем у 3, оставшееся умножаем на 2.

Член «годы». — Складываем вместе количество дюжин, избыток и количество четвёрок в избытке.

Член «месяц». — Если он начинается либо заканчивается на гласную, вычитаем число, обозначающее его номер в году, из 10. Результат плюс количество дней в нём дают член следующего месяца. Значение для января есть «0», для февраля или марта (третий месяц) будет «3», для декабря (двенадцатый месяц) будет «12».

Член «день» есть число месяца.

Полученный таким образом итог нужно подправить вычитанием «1» (но сперва добавив «7», если итог равен «0»), если дата приходится на январь или февраль високосного года; следует помнить, что всякий год, делящийся на 4, будет високосным, за исключением лишь тех сотенных лет для нового стиля, когда количество сотен не делится на 4 (например, 1800-й год).

Окончательный итог даёт день недели, причём «0» означает воскресенье, «1» — понедельник и так далее.

ПРИМЕРЫ

18 сентября 1783 года

17, делённое на 4, оставляет «1» сверх; 1 из 3 даёт «2»; дважды 2 будет «4».

83 есть 6 дюжин и 11, что даёт 17; плюс 2 будет 19, т. е. (после деления на 7) «5». В итоге 9, т. е. «2».

Член для августа есть «8 от 10», т. е. «2», а потому, для сентября, он есть «2 плюс 31», т. е. «5». В итоге 7, т. е. «0», который выходит.

18 даёт «4». Ответ: четверг.

 23 февраля 1676 года

16 из 18 даёт «2».

76 есть 6 дюжин и 4, что даёт 10; плюс 1 будет 11, т. е. «4». В итоге «6».

Член для февраля есть «3». В итоге 9, т. е. «2».

23 даёт 2. В итоге «4».

Поправка для високосного года даёт «3». Ответ: среда.

Льюис Кэрролл [13]

ПРАВИЛО НАХОЖДЕНИЯ ДАТЫ ПАСХИ ДЛЯ ЛЮБОГО ГОДА ВПЛОТЬ ДО 2499

1. Введение

В основе данного Правила лежит формула Гаусса; Гауссово доказательство этой формулы приведено во втором томе «Monatliche Correspondenz» Цаха (август 1800 года, страницы 221—230), по каковой публикации эту формулу воспроизвёл мистер У. У. Роуз Болл в своих «Математических <эссе и> развлечениях», выпущенных издательством «Макмиллан и Ко» [14]. Единственная отличительная черта моей версии данного Правила состоит в его большей простоте. Моим способом результат может быть посчитан в уме, без особого труда, за полминуты; метод же Гаусса определённо потребовал бы гораздо большего времени, как и гораздо больших усилий при вычислении в уме.

Перед тем, как приступить к самому Правилу, читателю следует овладеть кое-какими необходимыми арифметическими процедурами, изложенными здесь же.

 2. Некоторые необходимые арифметические процедуры

(1)

Прибавить 15 к данному числу. Производится в два шага—10 и 5.

{Так, если дано число 187, то говорим: «197, 202».}

(2)

Найти Остаток, получающийся от деления данного числа на 4.Делим<на 4 лишь>две последние цифры.

(3)

Найти Остаток, получающийся от деления данного числа на 7. Называем следующие одно за другим делимые. Это всё, чего требует наш монолог про себя. Остаток от каждого делимого (который, разумеется, служит десятковым порядком при следующем делимом) находится непосредственно.

{Так, если дано число 4325, то говорим: «43, 12, 55; 6».} [15]

Будет лучше изгнать семёрки, где только удобно так поступить.

{Следовательно, если делимое будет кратным семи, говорим «выходит» и пропускаем его. Так, если дано число 4225, то говорим: «42 выходит, 25; 4». Если дано число 4769, говорим: «47, 56 выходит, 9; 2».}

(4)

Найти остаток, получающийся от деления данного числа на 19. Если наше число не превышает 30, остаток находится непосредственно. Если число превышает 30, берём столько его цифр, сколько образуют число, превышающее единицу. Если это число чётное, делим его пополам и складываем со следующей цифрой; если оно нечётное, берём его меньшую половину и складываем со следующей цифрой, приставив к ней спереди единицу. Мысленно подставляем результат на место использованных таким образом цифр и продолжаем как ранее.

{Так, если дано число 88, то говорим: «4 и 8 будет 12». Если число 98, говорим: «4 и 18 будет 22; 3». Если число 147, говорим: «7 и 7 будет 14». Если число 157, говорим: «7 и 17 будет 24; 5». Если число 687, говорим: «3 и 8 будет 11; 5 и 17 будет 22; 3».}

Изгоняем девятнадцатки, где только можно.

{Так, если дано число 1992, пропускаем первые две цифры и говорим: «4 и 12 будет 16». Если число 5749, говорим: «2 и 17 будет 19, которое выходит; 2 и 9 будет 11». Если число 998, говорим: «4 и 19 будет 4; 2 и 8 будет 10». Если число 7994, говорим: «3 и 19 будет 3; 1 и 19 будет 1; 14».}

Если требуется прибавить 18, либо 17 и т. д., именуем их как «19 минус 1», либо «19 минус 2» и т. д. и пропускаем это «19».

{Так, если дано число 789, то говорим: «3 и минус 1 будет 2; 1 и 9 будет 10». Если число 967, говорим: «4 и минус 3 будет 1;17».}

Но этим способом не следует пользоваться, если число, к которому нужно прибавить 18 и т. д., меньше числа, которое предстоит вычесть.

{Так, если дано число 567, то не говорим: «2 и минус 3», но говорим: «2 и 16 будет 18; 9 и 7 будет 16».}

(5)

Помножить данное двузначное число, сумма цифр которого не превышает 9, на 11. <Ответ находится> подстановкой суммы этих цифр между ними же.

(6)

Найти дефект данного числа от наименьшего кратного 30, которое содержит это число [16].

Данное число может быть (α) кратным 30, либо (β) отличаться от наименьшего кратного 30, которое содержит это число, не более чем на 10, либо (γ) отличаться от него более чем на 10.

В случае (α) либо в случае (β) дефект усматривается непосредственно.

{Так, если дано число 180, то говорим: «дефект равен 0».Если число 203, говорим: «дефект равен 7».}

В случае (γ) берём избыток данного числа сверх следующего меньшего кратного 30 и вычитаем из 30.

{Так, если дано число 189, то говорим: «9 сверх; дефект равен 21».Если число 192, говорим: «12 сверх; дефект равен 18».}

3. Правило нахождение дня Пасхи для любого нужного года вплоть до 2499.

вернуться

11

Опубликовано в «Nature», т. 35, 517 (от 31 марта 1887 года). Данная статья — единственная из трёх, появившихся в данном издании, что была подписана «Льюис Кэрролл».

вернуться

12

См., однако, примечание [18].

вернуться

13

Таким образом, данный Способ есть приноровление к нашей способности вычислять в уме общей формулы для нахождения дня недели Д, которую можно записать в виде (см., например, Куликов С. Нить времён: Малая энциклопедия календаря. М., «Наука». С. 177—182):

Д = |(Г + М + Ч)/7|

(прямые скобки обозначают остаток от деления нацело). Здесь Г = | (J + {J/4})/7| есть годовой член, известный с VIII века как конкурента, или солнечная эпакта (на Руси — вруцелетная буква); его и составляет сумма (опять же по модулю семь) Доджсоновых члена «сотни» и члена «годы»; М — это месячный член из Доджсоновой таблицы, аналогичный старинной, из похожей таблицы, величине, называемой солнечный регуляр, а Ч — заданное число месяца. Выражение в фигурных скобках обозначает целую часть от деления.

Работа Доджсона по упрощению расчётов в уме дня недели для любой даты в следующем веке была интенсивно продолжена. На Западе дальнейшая попытка упрощения вызвала к жизни так называемое «правило Судного дня» Джона Хортона Конвея (статья «Завтра — новый день после Судного дня» в журнале «Eureka», октябрь 1973 года, затем два издания (второе — 1982 год в четырёх томах) книги «Winning Waysfor Your Mathematical Plays» с соавторами). Приведём краткое описание этого Правила. Оно заключается в предварительном нахождении двух величин, а именно:

1) Судный день года. Это порядковый номер дня недели, на который приходится в данном году 28 или 29 февраля. Известно, что в 1900 году последний день февраля был средой. Тогда, поскольку 365 = 1 mod 7, то каждый обычный год прибавляет 1 к Судному дню, а каждый високосный прибавляет 2 дня. Следовательно, Судный день для года 1900 + Y есть день 1900 + Y + {Y/4}. Высчитаем Судный день 1929 года (то есть, на какой день недели приходится в этом году 28 февраля): 1900 + 29 + {29/4} = 3 + 29 + 7 = 39 = 4 mod 7, т. е. четверг.

2) Судный день месяца. Правила Конвея тут таковы: а) для января — это 31/32-е числа, а для февраля — 28/29-е соответственно для простого и високосного годов; б) для чётных месяцев вроде апреля и июня число Судного дня равно порядковому номеру этого месяца; в) для «длинных» нечётных месяцев (т. е. для месяцев, у которых тридцать один день) число Судного дня есть порядковый номер месяца плюс 4; г) и для «коротких» нечётных месяцев (по тридцати дней) число Судного дня есть порядковый номер месяца минус 4. Таким образом, Конвей принимает Доджсонову таблицу:

вернуться

14

Названная книга Роуза Болла и поныне чрезвычайно популярна. Существует даже её перевод на русский язык (Болл У., Коксетер Г. Математические эссе и развлечения. М., «Мир», 1986). Однако и на русском языке, и в западных переизданиях эта некогда весьма пёстрая книга теперь существует в уменьшенной наполовину, если не на две трети, редакции, идущей от десятого прижизненного издания, в дальнейшем редактируемого известным математиком Г. Коксетером (так, указанный русский перевод сделан с 12-го коксетеровского издания!). То место, на которое ссылается Доджсон, ныне в книге отсутствует. Приведём соответствующий отрывок по четвёртому авторскому изданию.

«Пусть m и n — это числа, определённые как показано ниже.

(1) Разделить число, обозначающее год, на 4, на 7 и на 19, а соответствующие остатки от деления нацело обозначить как a, b и c.

(2) Разделить 19с + m на 30 и остаток обозначить через d.

(3) Разделить 2a + 4b + 6d + n на 7 и остаток обозначить через e.

(4) Тогда пасхальное полнолуние состоится через d дней после 21 марта, и Пасха выпадет на (22 + d + e)-е число марта либо на (d + e – 9)-й день апреля, за исключением случая, когда расчёт даст 29 для d и 6 для e (как получается для 1981-го года), — в этом случае Пасха приходится на 19-е апреля вместо 26-го; и за исключением случая, когда расчёт даст 28 для d, 6 для e и при этом c > 10 (как получается для 1954-го года) — тогда Пасха приходится на 18-е апреля вместо 25-го, и таким образом в этих двух случаях Пасха наступает на неделю раньше того срока, который получается согласно настоящему правилу.

Юлианский календарь свободен от подобных исключений, в григорианском же они появляются, правда очень редко (cм. прим. [23] — А. М.)

Остаётся только установить значения m и n для конкретного периода. В юлианском календаре имеем m = 15, n = 6. В григорианском календаре

вернуться

15

То есть, остаток при делении 4325 на семь равняется 6. В следующих примерах этого пункта он равняется соответственно 4 и 2. Далее — аналогично.

вернуться

16

Дефектом числа (либо фигуры) называется количественное отличие данного числа (либо параметров данной фигуры) от некоторого определённого числа (либо определённых параметров фигур данного класса; так, дефектом треугольника называется отличие суммы углов данного треугольника от 180°).