Выбрать главу

Философ Джон Сёрл в 1980 году описал эту возможность обмана с помощью мысленного эксперимента под названием «Китайская комната». Он подверг сомнению утверждение Тьюринга о том, что способность сымитировать интеллект равна обладанию им. С аргументом Сёрла есть только одна проблема: обмануть тест нелегко, более того, это нереально. Даже при ограниченном наборе переменных количество вероятных вопросов растет астрономически. Скажем, у нас есть 10 каузальных переменных и каждая из них может иметь два значения (0 или 1). Мы способны задать около 30 миллионов предполагаемых запросов, например: «Какова вероятность, что результат будет равен 1, если мы увидим, что переменная X равна 1, и сделаем переменную Y равной 0, а переменную Z равной 1?». Если бы переменных было больше или если бы у каждой было свыше двух состояний, то число возможностей вышло бы за пределы нашего воображения. В список Сёрла пришлось бы внести пунктов больше, чем атомов во Вселенной. Очевидно, что простой список вопросов и ответов никогда не сымитирует интеллект ребенка, не говоря уже об интеллекте взрослого.

Человеческому мозгу необходимы компактное представление информации, а также эффективная процедура, которая позволит должным образом интерпретировать каждый вопрос и вычленить нужный ответ из этого сохраненного представления. Таким образом, чтобы пройти мини-тест Тьюринга, нужно снабдить машины такой же эффективной репрезентацией и алгоритмом для получения ответа.

Эта репрезентация не просто существует, она по-детски проста — я говорю о диаграмме причинности. Мы уже видели один пример — диаграмму об охоте на мамонта. С учетом невероятной легкости, с какой люди могут передавать свои знания в диаграммах из стрелок и точек, я верю, что у нас в мозге действительно существует такая репрезентация. Но, что важнее для наших целей, эти модели позволяют пройти мини-тест Тьюринга, тогда как ни одна другая модель на это не способна. Давайте рассмотрим некоторые примеры.

Рис. 4. Диаграмма причинности для примера с расстрелом. A и B представляют действия солдат A и B

Предположим, что расстрельная команда собирается казнить узника. Чтобы это произошло, должна случиться определенная последовательность событий. Сначала суд выносит приговор о расстреле. Его доводят до капитана, который дает сигнал солдатам из расстрельной команды (А и В) стрелять. Будем считать, что они послушные исполнители и опытные снайперы, поэтому действуют только по команде, и если один из них выстрелит, то узник умрет.

На рис. 4 показана диаграмма, представляющая сюжет, который я только что изложил. Каждое из неизвестных (ПС, К, A, B, С) является переменной со значением «верно/неверно». Например, «С = верно» свидетельствует, что узник мертв; «С = неверно» выражает, что узник жив. «ПС = неверно» означает, что приговор не был вынесен; «ПС = верно» — что он был вынесен и т. д.

Диаграмма позволяет нам отвечать на вопросы о причинах, соответствующие разным уровням Лестницы. Во-первых, можно ответить на вопросы о связях (т. е. о том, что один факт говорит нам о другом). Если узник мертв, значит ли это, что приговор был вынесен? Мы (или компьютер) способны изучить диаграмму, проследить правила, стоящие за каждой стрелкой и, используя стандартную логику, прийти к выводу, что два солдата не выстрелили бы без команды капитана. Подобным образом капитан не дал бы команды, если бы в его распоряжении не было приговора. Поэтому ответ на наш вопрос — да. Другой вариант: предположим, мы узнали, что выстрелил А. Что это говорит нам о действиях В? Следуя стрелкам, компьютер приходит к выводу, что В тоже должен был выстрелить (А не стал бы стрелять, если бы капитан не дал сигнала, значит, В точно стрелял). Это справедливо, даже когда А не вызывает B (между A и B нет стрелки).

Поднимаясь по Лестнице Причинности, можно поставить вопрос об интервенции. А если солдат А по собственной инициативе решит выстрелить, не дожидаясь команды капитана? Будет ли узник жив или мертв? Вообще, этот вопрос сам по себе содержит некоторое противоречие. Я сейчас сказал вам, что А выстрелит, только если получит команду, а теперь мы спрашиваем, что будет, если он выстрелит без команды. Если просто использовать правила логики, как обычно делают компьютеры, этот вопрос становится бессмысленным. Как говорил в таких случаях робот из телесериала 1960-х годов «Затерянные в космосе», «это не вычисляется».