Диаграммы причинности, которые я предпочитаю использовать в этой книге и выбираю в качестве основного инструмента в последние 35 лет, не единственная модель причинности. Некоторые ученые (например, специалисты по эконометрике) любят работать с математическими уравнениями, другие (скажем, закоренелые статистики) предпочитают список допущений, которые предположительно обобщают структуру диаграммы. Независимо от языка, модель должна описывать, пусть и качественно, процесс, который порождает данные, — другими словами, причинно-следственные силы действуют в среде и формируют порождаемые данные.
Бок о бок с этим диаграммным «языком знания» существует символический «язык запросов», на котором мы выражаем вопросы, нуждающиеся в ответах. Так, если нас интересует эффект лекарства (D — drug) на продолжительность жизни (L — lifespan), то наш запрос можно символически записать так: P (L | do (D)). Иначе говоря, какова вероятность (P — probability) того, что типичный пациент проживет L лет, если его заставят принимать это лекарство? Вопрос описывает то, что эпидемиологи назвали бы интервенцией или лечением, и соответствует тому, что мы измеряем во время клинического исследования. Во многих случаях мы также захотим сравнить P (L | do (D)) и P (L | do (не-D)); последнее в данном случае описывает пациентов, которые не получили лечения, так называемую контрольную группу. Оператор do означает, что мы имеем дело с интервенцией, а не с пассивным наблюдением. В классической статистике нет ничего даже напоминающего этот оператор.
Мы должны применить оператор интервенции do (D), чтобы убедиться: наблюдаемое изменение в продолжительности жизни L объясняется самим лекарством и не объединено с другими факторами, которые могут укорачивать или удлинять жизнь. Если мы не вмешиваемся и даем самим пациентам решить, принимать ли лекарство, эти иные факторы могут повлиять на их решение, и разница в продолжительности жизни у тех, кто принимает и не принимает лекарство, больше не будет объясняться только этим. Например, представьте, что лекарство принимают только смертельно больные люди. Они определенно будут отличаться о тех, кто его не принимал, и сравнение двух групп будет отражать разницу в серьезности их болезни, а не эффект от лекарства. Однако, если заставлять пациентов принимать лекарство или отказываться от него, независимо от их изначального состояния, эта разница перестанет иметь значение и можно будет сделать обоснованное сравнение.
На языке математики мы записываем наблюдаемую частоту продолжительности жизни L у пациентов, которые добровольно приняли лекарство, как P (L | D), и это стандартная условная вероятность, которая используется в учебниках по статистике. Это выражение подразумевает, что вероятность P продолжительности жизни L допускается только в случае, если мы увидим, что пациент принимает лекарство D. Учтите, что P (L | D) может резко отличаться от P (L | do (D)). Это разница между увиденным и сделанным фундаментальна, она объясняет, почему мы не считаем падение атмосферного давления причиной надвигающегося шторма. Если мы увидим, что падение атмосферного давление повышает вероятность шторма и заставим показания барометра измениться, мы, однако, никак не повлияем на эту вероятность.
Эта путаница между тем, что мы видим, и тем, что происходит, привела к изобилию парадоксов, и некоторые из них мы разберем в этой книге. Мир, лишенный P (L | do (D)) и управляемый исключительно P (L | D), был бы действительно странным местом. Например, пациенты не ходили бы к врачу, чтобы избежать вероятности серьезно заболеть; города отказались бы от пожарных, чтобы сократить вероятность пожаров; врачи рекомендовали бы лекарства пациентам мужского и женского пола, но не пациентам, гендер которых неизвестен, и т. д. Трудно поверить, что менее трех десятилетий назад наука действовала в таком мире: оператора do не существовало.
Одним из главных достижений Революции Причинности стала возможность объяснить, как предсказать эффекты интервенции без ее осуществления. Это не было бы доступным, если бы, во-первых, мы не определили оператор do, с помощью которого формулируется верный вопрос, и, во-вторых, не нашли бы способ моделировать его без реального вмешательства.