Движение и взаимодействие корпускул и определяют свойства тел.
Идеи Ломоносова были встречены чрезвычайно, враждебно большинством заграничных учёных. В 1754 году некий Арнольд для получения учёной степени в Эрлангенском университете (Германия) написал сочинение, в котором «с успехом доказал» неправильность объяснения теплоты, которое было дано Ломоносовым.
Но беспристрастный суд истории доказал, что прав был Ломоносов. Его идеи были в дальнейшем развиты трудами многих исследователей в стройное учение, которое мы и постараемся изложить далее.
2. Вечное движение
Развитие науки за последние 150 лет наглядно доказало правильность гениальных мыслей Ломоносова.
Частицы, которые великий учёный назвал корпускулами, позднее стали называть молекулами. Молекулы действительно очень малы (рис. 1).
Насколько малы молекулы и как много их в любом теле, можно видеть из такого примера. Представьте себе, что мы взяли стакан воды и при помощи особой краски переметили все находящиеся в этой воде молекулы.
Выльем этот стакан воды с мечеными молекулами в океан и перемешаем воду равномерно между всеми океанами, морями и реками мира. Если теперь в любом месте зачерпнуть стакан воды, то в нём окажется около сотни знакомых нам меченых молекул!
Молекулы так малы, что трудно представить себе их состоящими из ещё более мелких частиц. А между тем молекулы действительно состоят из ещё более мелких частиц, которые теперь и называются атомами.
Рис. 1. Если сложить вместе столько песчинок, сколько содержится молекул воздуха в одном кубическом сантиметре, то получится куча, которая закроет большой завод.
В нашей книжке, однако, мы будем рассматривать такие свойства тел и такие их изменения, при которых сложное устройство молекул никак не сказывается. Поэтому мы будем молекулы представлять себе в виде очень маленьких твёрдых шариков, не задумываясь о том, как они устроены.
Рис. 2. Так выглядят в электронном микроскопе молекулы одного сложного химического соединения.
Несмотря на то, что молекулы нельзя увидеть даже в самый сильный из обычных микроскопов, учёные нашли способы с полной достоверностью доказать их существование. А в недавнее время удалось построить замечательный прибор — электронный микроскоп, который увеличивает настолько сильно, что с его помощью можно увидеть и отдельные молекулы! На рисунке 2 изображена сделанная при помощи электронного микроскопа фотография молекул одного сложного химического соединения. Правда, такие молекулы являются гигантами в мире молекул. Обычно же молекулы настолько малы, что и в электронный микроскоп мы не можем их увидеть.
Каковы же свойства молекул?
«Первым и самым важным из прирождённых свойств материи является движение», — писали около 100 лет тому назад Маркс и Энгельс. Молекулы не находятся в покое, а непрестанно движутся.
Очевидно, и частицы воздуха, беспорядочно двигаясь, непрерывно ударяются, как бы обстреливают наши тела. Почему же мы не чувствуем этих ударов? Объяснение очень простое: молекулы, как мы знаем, чрезвычайно малы и легки, и наши органы чувств не воспринимают слабых ударов отдельных молекул. Не чувствуем же мы увеличения тяжести надетой на голову шляпы, когда на неё сядет комар. А комар состоит из многих миллиардов молекул!
Другое дело, если быстро движущаяся молекула ударяется об очень небольшую частицу, по размерам сравнимую с ней. В этом случае удар уже не пройдёт бесследно для частицы.
Каждый из вас не раз видел, конечно, как солнечный луч, попадая в тёмную комнату через щель ставня или неплотно задёрнутую штору, пронизывает воздух и делает видимым множество находящихся в нём мельчайших пылинок. Какое беспорядочное движение можно наблюдать при этом! Пылинки причудливо мечутся и кружатся, напоминая рой мошек в тёплый летний вечер. Такое же беспорядочное движение можно увидеть, если, вооружившись микроскопом, присмотреться к частичкам дыма обычной папиросы. И такое же причудливое движение совершают мельчайшие частицы, если поместить их в жидкость. Сложные запутанные узоры выписывают, например, частицы цветочной пыльцы, высыпанной в воду.