Соотечественник Гальвани, физик Алессандро Вольта (1745-1827), не был согласен с такой трактовкой, пребывая в уверенности, что заряд возникает не в мышцах животного, а при соединении двух металлов, и попытался доказать это в 1800 году. Вольта экспериментировал с разными металлами, которые контактировали у него без мышечных волокон, посредством растворов. Он помещал металлы в сосуды с водой, где была высокая концентрация соли, и складывал их один на другой.
Чтобы жидкость не проливалась, он заполнял сосуды чередующимися дисками из меди и цинка, между которыми помещал прокладки из картона или сукна, пропитанные электролитом. Вольта обнаружил, что эти сосуды дают постоянный ток, в отличие от лейденской банки, где заряд накапливается и происходит мгновенная разрядка. Батареи Вольты, как их назвали в честь изобретателя, стали первым устройством в истории для получения электрической энергии. Напряжение батареи измеряется в вольтах (тоже в честь изобретателя).
Понятие магнитного поля — одно из основных в физике. Оно возникло в силу необходимости объяснить взаимодействие на расстоянии между телами. Вначале его определяли как пространство, в котором распространяются потенциальные силы, проявляющие себя при особых обстоятельствах. Фарадей предложил эту идею для объяснения действия магнита. Наблюдая за мгновенным распределением железных опилок, рассыпанных вокруг магнита, он подумал, что в пространстве должны существовать невидимые силы, готовые проявиться. После этого данная идея стала применяться ко всем дистанционно действующим силам: Земля образует вокруг себя гравитационное и магнитное поля, электрический заряд образует электрическое поле и так далее.
В середине XIX века английский изобретатель-самоучка Майкл Фарадей (1791-1867) сделал решительный шаг к пониманию электрических явлений. На основе экспериментальных данных, без опоры на математику, он связал электричество с магнетизмом — прежде данные явления изучались отдельно. Фарадей открыл электромагнитную индукцию, позволившую создать генераторы и электрические двигатели, а также законы электролиза. В результате его считают отцом электромагнетизма и электрохимии.
РИС. 3
Эффект Эрстеда, согласно которому при прохождении тока по проводнику рядом с компасом стрелка компаса отклоняется в направлении проводника. Фарадей и Ампер частично основывали свои работы на открытии датского ученого, установившего связь электричества и магнетизма.
Фарадей изучил старый опыт, который до сих пор показывают на уроках физики: если рассыпать железные опилки на бумаге, расположенной над магнитом, то они образуют кривые линии, соединяющие полюсы магнита. Фарадей заявил, что эти силовые магнетические линии — визуальный образ магнитного поля. С другой стороны, Фарадей знал об открытом датским ученым свойстве, которое устанавливало несомненную связь электричества и магнетизма. В 1811 году Ханс Кристиан Эрстед (1777-1851) увидел, что при расположении компаса возле провода, по которому пропускается электрический ток, стрелка отклоняется, занимая перпендикулярное положение к проводу (см. рисунок 3). Фарадей догадался, что электрический ток тоже может образовывать магнитные силовые линии вокруг провода.
Эти догадки смог подтвердить Андре-Мари Ампер (1775— 1836), продолживший исследования Эрстеда. В своих опытах Ампер увидел, что провод, по которому течет электрический ток, ведет себя как магнит: два параллельных провода, по которым ток проходит в одном направлении, взаимно притягиваются, а когда направление тока противоположное, провода взаимно отталкиваются. Французский ученый открыл, что провод, намотанный на катушку, при прохождении по нему электрического тока подобен магниту. Именно он впервые использовал понятие «электромагнетизм».
РИС. 4
В динамо-машине Фарадея кинетическая энергия движения вращающегося медного диска превращается в электричество, так как диск пересекает силовые линии магнита, индуцируя электрический ток.
Таким образом, базовым принципом электромагнетизма является следующее: когда два электрических заряда находятся в движении, между ними возникает магнитная сила (кроме электростатической силы, которая, согласно закону Кулона, имеется между двумя зарядами в состоянии покоя). Все проявления магнитных феноменов могут быть объяснены силой, возникающей между движущимися зарядами.
После этого Фарадей задался вопросом: а может ли все быть наоборот? Способен ли магнит вызывать электрический ток такой же, как от батарейки? Он поставил 29 августа 1831 года решающий эксперимент: ученый вращал намотанный на катушку провод вокруг магнитного сердечника и действительно добился возникновения электрического тока (см. рисунок 4). Исследуя данный феномен, он понял, что ток появляется из-за пересечения проводом магнитных силовых линий. Так он открыл принцип электрической индукции: переменное магнитное поле индуцирует электродвижущую силу. Закон Фарадея гласит, что величина ЭДС пропорциональна скорости изменения магнитного потока. Кроме того, Фарадею удалось создать первый электрический генератор, или динамо-машину (от греческого dinamis — «сила»), в которой электричество возникало от механического движения.
РИС. 5
Вертикальные магниты (С и D) притягивают горизонтальные (А и В), обмотанные медной проволокой. Движение толкает металлические зонды (о-p и q-r) к латунным наконечникам (1-т и s-t) наполненным ртутью и прикрепленным к цинковой и медной пластинам, погруженным в раствор кислоты (F). Ток проходит по обмотке горизонтального электромагнита, заставляя его качаться, притягиваясь поочередно то к С, то к D.
В то же время по другую сторону Атлантики американец Джозеф Генри (1797-1878), также самоучка, независимо и параллельно с Фарадеем открыл электрическую индукцию, следуя шаг за шагом за датчанином Эрстедом. Генри был идеалистом и считал, что должен разделить свои знания со всем миром, что привело его к потере патента на телеграф, который удалось зарегистрировать Сэмюэлю Морзе (1791-1872). В 1831 году, когда Фарадей создавал первый электрогенератор, Генри завершал свои опыты с электромагнитами и разработал устройство, дополняющее то, что придумал его английский коллега: Генри использовал электрический ток с целью заставить поворачиваться колесо. Он изобрел электрический двигатель (см. рисунок 5). Если в динамо-машине ротор — вращающаяся часть устройства — преобразует механическое движение в электричество, то в двигателе ротор трансформирует электричество в механическое движение.
Джеймс Клерк Максвелл внес значительный вклад в науку, но его главным достижением было описание посредством системы четырех уравнений свойств электромагнитного поля и его взаимодействия стелами, имеющими электрический заряд. Впоследствии было установлено, что уравнения Максвелла — лишь приближение уравнений, составляющих фундаментальные основы квантовой электродинамики. В большинстве случаев расхождения между квантовой электродинамикой и уравнениями Максвелла слишком малы для того, чтобы измерить их, и неактуальны. Но в случаях, когда свет ведет себя как частица, или для очень интенсивных полей они становятся важны. В дифференциальном виде уравнения Максвелла для макроскопического мира выглядят следующим образом.