11. K. Davies and R. Barrangou, “MasterChef at Work: An Interview with Rodolphe Barrangou,” CRISPR Journal 1, (2018): 219–222, https://www.liebertpub.com/doi/full/10.1089/crispr.2018.29015.int?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.
12. Hank Greely, quoted in Mark Shwartz, “Target, Delete, Repair,” Stanford Medicine, Winter 2018, https://stanmed.stanford.edu/2018winter/CRISPR-for-gene-editing-is-revolutionary-but-it-comes-with-risks.html.
13. Luciano Marraffini, “CRISPR Frontiers” (discussion, New York Academy of Sciences, February 24, 2020).
14. S. Wiles, “Monday micro—200 million light years of viruses?!,” Infectious Thoughts August 5, 2014, https://sciblogs.co.nz/infectious-thoughts/2014/08/05/monday-micro-200-million-light-years-of-viruses/.
15. S. Klompe and S. H. Sternberg, “Harnessing A Billion Years of Experimentation: The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems,” CRISPR Journal 1, (2018): 141-158.
16. Fyodor Urnov in Human Nature (2019), https://wondercollaborative.org/human-nature-documentary-film/.
17. CSHL Leading Strand, “CSHL Keynote, Dr Blake Wiedenheft, Montana State University,” YouTube video, 21:21, last viewed June 26, 2020, https://www.youtube.com/watch?v=2x5VoReHV_4&t=.
18. F. Jiang and J. A. Doudna, “CRISPR-Cas9 Structures and Mechanisms,” Annual Review of Biophysics 46, (2017): 505–529, https://www.annualreviews.org/doi/full/10.1146/annurev-biophys-062215-010822.
19. HHMI BioInteractive, “CRISPR-Cas9 Mechanism & Applications,” https://www.biointeractive.org/classroom-resources/crispr-cas-9-mechanism-applications.
20. M. Shibata et al., “Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy,” Nature Communications 8, (2017): 1430, https://www.nature.com/articles/s41467-017-01466-8.
21. D. Lawson Jones et al., “Kinetics of dCas9 target search in Escherichia coli,” Science 357, (2017): 1420–1424, https://science.sciencemag.org/content/357/6358/1420?.
22. Andrew Wood, phone interview, August 28, 2019.
23. Rodolphe Barrangou, “CRISPR-Cas: From Bacterial Adaptive Immunity to a Genome Editing Revolution,” XBio, September 2019, https://explorebiology.org/summary/genetics/crispr-cas:-from-bacterial-adaptive-immunity-to-a-genome-editing-revolution
24. S. Hwang and K. L. Maxwell, “Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems,” CRISPR Journal 2, (2019): 23–30, https://www.liebertpub.com/doi/full/10.1089/crispr.2018.0052.
25. M. Adli, “The CRISPR tool kit for genome editing and beyond.” Nature Communications 9, (2018): 1911, https://www.nature.com/articles/s41467-018-04252-2.
26. P. T. Harrison and S. Hart, “A beginner’s guide to gene editing,” Experimental Physiology 103, (2018): 439–448, https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP086047.
27. Jennifer Doudna, Keystone Symposium, Banff, Canada, February 9, 2020.
Chapter 3: We Can Be Heroes
1. Fyodor Urnov, “Genome Engineering,” Keystone Symposium, Victoria Island, Canada, February 21, 2019.
2. Francisco Mojica, interview, Santa Pola, Spain, May 1, 2018.
3. Ed Yong, “The Unique Merger That Made You (and Ewe, and Yew),” Nautilus, February 6, 2014, http://nautil.us/issue/10/mergers--acquisitions/the-unique-merger-that-made-you-and-ewe-and-yew.
4. Manuel Ansede, “Francis Mojica, de las salinas a la quiniela del Nobel,” El País, May 18, 2017, https://elpais.com/elpais/2017/05/18/eps/1495058731_149505.html.
5. F. J. M. Mojica et al., Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology 9, (1993): 613–621.
6. Y. Ishino et al., “Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product,” Journal of Bacteriology 169, (1987): 5429–5433, https://jb.asm.org/content/jb/169/12/5429.full.pdf.
7. F. J. M. Mojica et al., “Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning,” Molecular Microbiology 17, (1995): 85–93, DOI: 10.1111/j.1365 -2958.1995.mmi_17010085.x.
8. Clara Rodriguez Fernandez, “Interview with Francis Mojica, the Spanish scientist that [sic] discovered CRISPR,” Labiotech, November 13, 2017, https://labiotech.eu/francis-mojica-crispr-interview/.
9. B. Masepohl et al., “Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120,” Biochimica et Biophysica Acta 1307, (1996): 26–30, https://www.sciencedirect.com/science/article/abs/pii/0167478196000401.
10. K. S. Makarova et al., “A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis,” Nucleic Acids Research 30, (2002): 482–496, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC99818/.
11. K. Davies and F. Mojica, “Crazy About CRISPR: An Interview with Francisco Mojica,” CRISPR Journal 1, (2018): 29–33, https://www.liebertpub.com/doi/10.1089/crispr.2017.28999.int.
12. Ibid.
13. Molly Campbell, “Francisco Mojica: The Modest Microbiologist Who Discovered and Named CRISPR,” Technology Networks, October 14, 2019, https://www.technologynetworks.com/genomics/articles/francis-mojica-the-modest-microbiologist-who-discovered-and-named-crispr-325093.