19. B. L. Oakes et al., “CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification,” Cell 176, (2019): 254–267, https://pubmed.ncbi.nlm.nih.gov/30633905/.
20. D. Burstein et al., “New CRISPR–Cas systems from uncultivated microbes,” Nature 542, 2017: 237–241.
21. B. Zetsche et al., “Cpf1 Is a Single RNA-guided Endonuclease of a Class 2 CRISPR-Cas System,” Cell 163, (2015): 759–771, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638220/.
22. J. S. Chen et al., “CRISPR-Cas12a target binding unleashes indiscriminate single-strand DNase activity,” Science 360, (2018): 436–439, https://science.sciencemag.org/content/360/6387/436.
23. J. P. Broughton et al., “CRISPR-Cas12-based detection of SARS-CoV-2,” Nature Biotechnology, 2020, https://www.nature.com/articles/s41587-020-0513-4.
24. J. S. Gootenberg et al., “Nucleic acid detection with CRISPR-Cas13a/C2c2,” Science 356, (2017): 438–442, https://science.sciencemag.org/content/356/6336/438.
25. John Carreyrou, Bad Blood (New York: Knopf, 2018).
26. M. B. Nourse et al., “Engineering of a miniaturized, robotic clinical laboratory,” Bioeng. Transl. Med. 3, 58–70 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773944/.
27. O. O. Abudayyeh et al., “Nucleic acid detection of plant genes using CRISPR-Cas13,” CRISPR Journal 2, (2019): 165-171, https://www.liebertpub.com/doi/10.1089/CRISPR.2019.0011.
28. Elie Dolgin, “The kill-switch for CRISPR that could make gene-editing safer,” Nature January 15, 2020, https://www.nature.com/articles/d41586-020-00053-0.
29. S. E. Klompe et al., “Transposon-encoded CRISPR–Cas systems direct RNA-guided DNAintegration,” Nature 571, (2019): 219–225, https://www.nature.com/articles/s41586-019-1323-z.
Chapter 8: Genome Editing B.C.
1. Fyodor Urnov, TRI-CON, San Francisco, February 15, 2018.
2. Editorial, “Method of the Year 2011,” Nature Methods 9, (2012): 1, https://doi.org/10.1038/nmeth.1852.
3. Mario R. Cappechi, “The making of a scientist,” HHMI Bulletin, May 1997, https://healthcare.utah.edu/capecchi/HHMI.pdf.
4. Ibid.
5. F. D. Urnov, “Genome Editing B.C. (Before CRISPR): Lasting Lessons from the ‘Old Testament,’ ” CRISPR Journal 1, (2018): 34–46, https://www.liebertpub.com/doi/10.1089/crispr.2018.29007.fyu.
6. Fyodor Urnov, interview, Florence, Italy, June 27, 2018.
7. http://sangamoncountyhistory.org/wp/?p=1410.
8. Ed Lanphier, interview, Ross, California, March 4, 2019.
9. S. Hacein-Bey-Abina et al., “Sustained Correction of X-Linked Severe Combined Immunodeficiency by Ex Vivo Gene Therapy,” New England Journal of Medicine 346, (2002): 1185–1193, https://www.nejm.org/doi/full/10.1056/NEJMoa012616.
10. Douglas Birch, “Hamilton Smith’s second chance; Scientist’s journey; He won the Nobel, but lost his way. Could he put his family together? And could he crack one of life’s great puzzles?,” Baltimore Sun, April 11, 1999, https://www.baltimoresun.com/news/bs-xpm-1999-04-11-9904120283-story.html.
11. Ibid.
12. Y. G. Kim, J. Cha, and S. Chandrasegaran, “Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain,” Proceedings of the National Academy of Sciences USA 93, (1996): 1156–1160, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40048/.
13. S. Chandrasegaran and J. Smith, “Chimeric Restriction Enzymes: What is Next?,” Biological Chemistry 380, (1999): 841–848, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033837/.
14. M. Bibikova et al., “Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases,” Genetics 161, (2002): 1169–1175, https://www.genetics.org/content/161/3/1169.long.
15. M. Bibikova et al., “Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases,” Molecular and Cellular Biology 21, (2001): 289–297, https://mcb.asm.org/content/21/1/289.
16. K. Davies and D. Carroll, “Giving Genome Editing the Fingers: An Interview with Dana Carroll,” CRISPR Journal 2, (2019): 157–162, https://www.liebertpub.com/doi/10.1089/crispr.2019.29058.dca.
17. M. H. Porteus and D. Baltimore, “Chimeric nucleases stimulate gene targeting in human cells,” Science 5620, (2003): 763, http://science.sciencemag.org/content/300/5620/763.
18. F. D. Urnov et al., “Highly Efficient Endogenous Human Gene Correction Using Designed Zinc-Finger Nucleases,” Nature 435, (2005): 646–651, https://www.nature.com/articles/nature03556.
19. S. Jaffe, “Giving Genetic Disease the Finger,” WIRED, July 5, 2005, https://www.wired.com/2005/07/giving-genetic-disease-the-finger/.
20. K. Kandavelou et al., “ ‘Magic’ scissors for genome surgery,” Nature Biotechnology 23, (2005): 686–687, https://www.nature.com/articles/nbt0605-686.
21. B. J. Doranz et al., “A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors,” Cell 85, (1996): 1148–58, https://www.cell.com/cell/fulltext/S0092-8674(00)81314-8.
22. M. Parmentier, “CCR5 an HIV infection, a view from Brussels,” Frontiers in Immunology 6, (2015): 295, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459230/.
23. M. Samson et al., “Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene,” Nature 382, (1996): 722–725, https://www.nature.com/articles/382722a0.
24. Stephen J. O’Brien, Tears of the Cheetah (New York: Thomas Dunne, 2003).
25. T. R. Brown, “I am the Berlin patient: a personal reflection,” AIDS Research and Human Retroviruses 31, (2015): 2–3, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287108/.