Чтобы попытаться разрешить противоречие между двумя противоположными и несовместимыми версиями (что же такое свет: волна или частицы?), Эйнштейн применит статистическую механику. Он воспользовался теорией вероятностей, перенеся ее в область излучения. Он начал с происхождения световых пучков. Нагретый металл излучает электроны. Полученная световая энергия переносится «квантами» (позже их станут называть фотонами). Это фотоэлектрический эффект (он известен: его открыл Герц в 1887 году, а Ленард[30] получит за него Нобелевскую премию). Энергия квантов пропорциональна частоте нагревания металлического тела (чем больше раскаляется металл, тем больше энергия, тем ярче свет).
Спектр света зависит от частот светоизлучения. Но почему при определенных частотах не возникает светового луча? Планк отступил перед этим препятствием. Эйнштейн его преодолеет. На его взгляд, здесь не действует сплошной закон — всё или ничего. А значит, не существует «сплошного светового поля». Применяя статистические расчеты, Эйнштейн обнаружил, что световая энергия выделяет не кванты, как думал Планк, а порции квантов. По Эйнштейну, если энергии квантов недостаточно (порция слишком мала), она не позволяет отделить материю — электрон. А без излучения этого электрона не будет видимого света.
Эйнштейн опирался на труды Максвелла о природе энергии электромагнитных явлений, применяя их к свету. Его вероятностный подход, отличавшийся от подхода Планка, породил формулу энтропии[31] излучения в заданном объеме. Из этого он вывел отношение между энергией и частотой:
E = hv,
которую он приписал свойству излучения. И вывод: энергия света распределяется в пространстве дискретно в форме квантов света.
То, что Планк считал математической уловкой, Эйнштейн сделал основой своей теории. Он ввел в физику квантование световой энергии. Фотоэлектрический эффект объясняется «гипотезой о квантах света».
Планк уже выполнил часть этой работы в 1900 году: константа Планка никуда не делась. Повысив температуру, увеличим частоту, получим энергию более высокого спектра, например фиолетового. Но тайна дискретного распространения света оставалась неразгаданной.
По Планку, дискретность спектра световой энергии невозможно объяснить. По Эйнштейну, его прерывистое излучение обусловлено частотой колебания. Свет обладает свойствами волн и корпускулярной составляющей. Немыслимый парадокс: частицы не могут обладать свойствами волн, а волны — свойствами частиц. Частота колебания и частицы несовместимы. Либо волновая природа, либо корпускулярная: наука заставляет выбирать. Эйнштейн не выбирает. Точнее, он выбирает и то и другое. Он опирается на труды Максвелла и Больцмана о распределении энергии колебания электронов в теле и принимает парадоксальное сочетание волновых и корпускулярных свойств.
Поскольку поля фотонов не могут заполнить всё пространство, ученый утверждает концепцию дискретности светового излучения. Эйнштейн объединяет понятие кванта с понятием «вероятности» волнового колебания. Энергия становится пропорциональна частоте. С точки зрения классической физики — полнейшая чушь! Для современной науки — огромный прогресс!
Заключение Эйнштейна: свет состоит из дискретного потока частиц, перемещающихся с энергией, которая зависит лишь от частоты колебаний.
Волновой и корпускулярный дуализм, отсутствие причинности этих процессов — выводы парадоксальные, невиданно смелые. Это теория порождения и преобразования света по Эйнштейну.
Следуя за другими, но превзойдя их, Эйнштейн дал определение природы света. Именно этот прорыв в постижении световых явлений принес ему в 1922 году Нобелевскую премию за 1921 год, хотя и не был так революционен, как его теория относительности.
ОТ БЕРНА ДО БЕРЛИНА
1906 год. Пять статей, которые произведут переворот в науке, опубликованы в ведущем физическом журнале мира. Эйнштейн на седьмом небе? Ходит с гордо поднятой головой, мечтая о реванше, мимо Политехникума, отказавшегося от его услуг? Купается ли он в счастье? Проникнута ли им его жизнь, его взгляды, поступки?
Каждое утро Альберт идет пешком в патентное бюро. По дороге рассматривает большую Часовую башню, одновременно незыблемую и изменчивую. На его лице безмятежность — ни усталости, ни радости. Башня остается на своем месте. Зато Эйнштейн уже шесть раз сменил жилье в маленьком Берне. От комнатки прислуги на Герехтигкайтсгассе, где он написал первые наброски к статьям в 1902 году, до дома на Эгертенштрассе, где прожил с Милевой до 1909 года.
30
Филипп Ленард (1862–1947) — немецкий физик. Руководитель Радиологического института в Гейдельберге (с 1909 года). Изучал природу катодных лучей и их свойства (Нобелевская премия, 1905). Исследовал также свойства ультрафиолетового излучения, явления фотоэффекта (экспериментально показал, что скорость фотоэлектронов зависит только от частоты света).