Вся концепция структуры и возможностей атома получила новое истолкование. Если верить де Бройлю, Эйнштейн заблуждается. Ланжевен отнесся к работам молодого человека с осторожностью и интересом. Осведомился об исследованиях, которые вели другие ученые. Обнаружил, что де Бройль не один поколебал выводы Эйнштейна. В знаменитом Геттингенском университете Вернер Гейзенберг, двадцати трех лет от роду, пришел к тому же выводу, хотя и другим путем. В это же время в Кембридже, не сговариваясь с двумя коллегами,
Поль Дирак[68], тоже двадцати трех лет, сделал точно такие же выводы. Эйнштейновское кредо, касающееся квантовой теории, содержит неточности, его блестящие умозаключения приблизительны, к ним приплелись ошибки и противоречия. В Швейцарии молодой австрийский физик Эрвин Шрёдинген получил те же результаты. И тем не менее все эти ученые умы восхищались Эйнштейном. Вместо того чтобы свергнуть едва установленную статую, они хотели внести свою лепту в создание новой физики. Они считали Эйнштейна своим духовным наставником. Но набросили ему на плечи мантию Моисея, оставшегося на том берегу Иордана, которому заказана Земля обетованная.
Начали выходить статьи, ставившие под вопрос заключения нобелевского лауреата или стремящиеся их подправить. Каждый бряцал оружием. Умы пришли в возбуждение. Перед лицом молодой гвардии Эйнштейн предстал военачальником без армии. Его гордость была уязвлена, однако он не отступил под прикрытие своей уверенности. Он согласился на встречу с Гейзенбергом и принял его дважды, с разницей в год. Однако при каждой встрече оба отстаивали свою позицию. Тепла не ощущалось. Гейзенберг гнул свою линию, Эйнштейн пытался его сбить. Любопытно, что аргументы Эйнштейна основывались не на четком анализе трудов его оппонентов, а попросту на «интуиции». Эйнштейн осуждал новую квантовую физику, приводя аргументы, которые насмешили бы его 20 лет тому назад.
В чем смысл? В чем суть спора, занимавшего исследователей? В своей статье от 1905 года Эйнштейн высказал предположение о том, что световые волны представляют произвольным образом кванты света, наличием и количеством которых определяется интенсивность светового излучения.
Позже физик Нильс Бор[69], близкий друг Эйнштейна, распространил структуру света на структуру атома и объединил их.
Атом состоит из ядра, вокруг которого вращаются отрицательно заряженные частицы — электроны. Эти электроны обладают энергией, различающейся в зависимости от орбиты, по которой они следуют. Переходя с орбиты на орбиту, они могут терять энергию, и эта энергия преобразуется в свет, единицей которого является фотон. Чем больше количество выпущенных фотонов, тем ярче свет.
Возникает вопрос: когда же это происходит и возможно ли предвидеть это событие? Неужели излучение совершенно непредсказуемо? Или же его возникновение подчиняется еще неведомому закону, который только предстоит открыть? Эйнштейн склонялся ко второму варианту. Он считал, что, хотя никто не может предсказать подобное физическое событие, впоследствии будет создана теория, которая его подтвердит. Надо только продолжать исследования. Структура атома, излучение света не могут возникать в неопределенности и хаосе. Эйнштейн утверждал, что Вселенная строится по определенным правилам. Нет ничего произвольного. Надо только найти ключ.
Де Бройль и его молодые коллеги по всей Европе не могли смириться с этим смутным утверждением, лишенным научной основы, построенным на одной лишь интуиции. Исследователи определили новую механику атома и назвали ее «волновой механикой». Это определение делало ставку на волновые способности атомных частиц. Парадокс в том, что этот вывод походил на открытие Эйнштейна, касающееся света. Молодая гвардия «просто-напросто» распространила его на материю. Известно, что свет способен к преломлению. Из этого они заключили, что и материя к этому способна!
Было отмечено, что излучение частиц света, интенсивность и частота лучей произвольны. Но при этом сохраняли убеждение в том, что положение атомных частиц, траектория электронов повинуются четким правилам. Это одна из основ механистической физики. Теория Гейзенберга смела эту уверенность. Структура материи, структура атома могут быть определены только испускаемым излучением. Механистическая физика была похоронена квантовой, или волновой, механикой. С этим еще Эйнштейн со своей «теорией квантов света» мог смириться. Но Бор пошел еще дальше, поскольку установил непреложную связь между атомной частицей и световой волной, электроном и фотоном. В ходе его исследований было установлено преимущество поведения испущенного фотона над движением электрона. Это был переход от механистической физики к квантовой.
68
Поль Адриен Морис Дирак (1902–1984) — английский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике 1933 года (совместно с Э. Шрёдингером). Член Лондонского королевского общества (1930), а также ряда академий наук мира, в том числе иностранный член Академии наук СССР (1931), Национальной академии наук США (1949) и Папской академии наук (1961). Работы Дирака посвящены квантовой физике, теории элементарных частиц, общей теории относительности. Он является автором основополагающих трудов по квантовой механике (общая теория преобразований), квантовой электродинамике и квантовой теории поля. Предложенное им релятивистское уравнение электрона позволило ввести представление об античастицах.
69
Нильс Хенрик Давид Бор (1885–1962) — датский физик, лауреат Нобелевской премии по физике (1922), присужденной за создание квантовой теории строения атома.