Пока же, согласно промежуточному определению Международного астрономического союза (IAU), коричневыми карликами следует называть космические объекты, масса которых находится в диапазоне от 13 до 75–80 масс Юпитера (крупнейшая планета нашей Солнечной системы уже давно является условной единицей массы в различных официальных документах). Ученые экспериментально подсчитали, что именно при достижении 13 юпитерианских масс становится возможным запуск термоядерного синтеза дейтерия (тяжелого изотопа водорода), тогда как верхний предел (75–80 масс Юпитера) — это порог, превышение которого приводит к началу самоподдерживаемой реакции превращения водорода в гелий.
Возвращаясь к коричневым карликам, напомним, что они, в отличие от нормальных звезд, не способны долго поддерживать в своих недрах термоядерные реакции, благодаря которым звезды не только не остывают на протяжении очень длительного времени, но и умудряются постепенно разогреваться (благодаря увеличению интенсивности процесса термоядерного горения), поэтому их температурная динамика прямо противоположна во времени.
Быстро исчерпав ограниченные исходные запасы горючего (отправив в «топку» весь дейтерий) и не сумев достигнуть минимальной критической массы, необходимой для запуска устойчивой термоядерной реакции, приводящей к образованию гелия, коричневые карлики с возрастом медленно, но достаточно равномерно остывают, излучая в окружающее космическое пространство свою остаточную внутреннюю тепловую энергию. Впрочем, их быстрому параллельному сжатию препятствует специфический физический процесс, называемый давлением вырожденного электронного газа: при достаточно высокой температуре и плотности вещества скапливающиеся на нижних энергетических уровнях электроны оказывают давление, которое активно противодействует силам гравитации.
Вал открытий
Первым космическим объектом, получившим официальный статус коричневого карлика, стал Teide 1, обнаруженный в 1994 году группой испанских астрофизиков под руководством Рафаэля Реболо в звездном скоплении Плеяды на расстоянии примерно 400 световых лет от Земли. Своим названием объект обязан телескопу обсерватории Тейде на острове Тенерифе (Канарские острова), при помощи которого его и удалось засечь. Спустя год после своего формального открытия Teide 1 был признан научным сообществом именно коричневым карликом. Тогда же объявился коричневый карлик номер два — объект Gliese 229, найденный японскими астрономами в небольшом созвездии Заяц, расстояние до которого составляло лишь 19 световых лет. Далее в течение весьма короткого времени астрофизики смогли выявить порядка нескольких десятков схожих объектов в самых различных регионах Вселенной.
Эти быстрые успехи охотников за коричневыми карликами объяснялись прежде всего заметным технологическим прогрессом, достигнутым земными астрономами с конца 80-х годов прошлого века в конструировании новых телескопов, работающих в инфракрасном диапазоне и оборудованных высокочувствительными матрицами большого размера.
Именно в этом световом диапазоне относительно слабое излучение, исходящее от коричневых карликов, оказалось наиболее уловимым, и после запуска в эксплуатацию целой серии таких гигантских инфракрасных наземных телескопов процесс их обнаружения ускорился.
В новом тысячелетии дополнительную важную лепту в поиск таких объектов, безусловно, внесли и космические телескопы, оснащенные детекторами инфракрасного излучения. Особенно отличились на этом фронте специализированный телескоп-обсерватория NASA Spitzer, запущенный на гелиоцентрическую орбиту в августе 2003 года, и новейший телескоп, отправленный NASA в космос в декабре 2009 года.
Отметим также, что заметному ускорению процесса экспериментального обнаружения коричневых карликов в немалой степени способствовало появление достаточно простого и при этом высокорезультативного аналитического метода, предложенного пионером этого направления Рафаэлем Реболо, — так называемого литиевого теста. Дело в том, что у всех «нормальных» звезд процесс полного сжигания лития занимает немногим более 100 млн лет, тогда как в коричневых карликах этот легчайший химический элемент сохраняется на протяжении свыше 10 млрд лет. Отталкиваясь от этой понятной арифметики, при условии обнаружения в спектре «холодной звезды» литиевой линии вероятность того, что она на самом деле является коричневым карликом, составляет почти 100%.