Иногда рождаются необычные сочетания. Например, в американском городе Фаллон (штат Невада) компанией Enel была построена гибридная солнечно-геотермальная станция мощностью 59 МВт.
Однако считать подобные станции альтернативой обычной генерации затруднительно. Дает себя знать их традиционный недостаток — маленькая мощность. Так, станция в Фаллоне по американским стандартам потребления должна давать энергию примерно для 50 тыс. домохозяйств. При этом проект обошелся примерно в 10 млн долларов за 1 МВт мощности. И он не может быть растиражирован: конкретно в Неваде удачно совпали жаркий солнечный климат и геологический разлом с геотермальными проявлениями. Понятно, что такие условия встречаются не везде.
В качестве варианта гибридной генерации можно рассмотреть многотопливные (чаще всего двухтопливные) станции. Это модернизированные дизельные генераторы, способные работать как на дизельном топливе, так и на сырой нефти или газовом топливе. Подобные машины производятся и в России, например на Коломенском заводе. Обычно такие генераторы имеют сравнительно небольшую мощность — 1,5–2 МВт (как двигатель тепловоза). Выпуск двухтопливных (дизель и газ) генераторов достаточно высокой (до 17 МВт) мощности налажен финской компанией Värtsilä (с недавних пор имеет производственную площадку в Пензе). Отдельные генераторы могут быть соединены в «батарею», и в совокупности получается станция достаточно большой мощности.
Värtsilä строит многотопливные электростанции мощностью до 70 МВт в странах третьего мира: Доминиканской Республике, Нигерии. В 2008 году двухтопливная станция совокупной мощностью 300 МВт («батарея» из 18 двухтопливных генераторов Värtsilä 18V50DF) была пущена в азербайджанской нефтепромышленной зоне Сангачал по заказу компании Azer Enerji.
У подобных станций есть преимущество — надежная работа в случае перебоев с поставками базового топлива (как правило, газа). Во время перебоев здесь может сжигаться дизельное топливо или сырая нефть. Однако этим их достоинства исчерпываются, поскольку газ значительно дешевле дизельного топлива. При расчете затрат на приобретение топлива для выработки 1000 кВт·ч энергии получается, что газ оказывается дешевле дизеля почти в семь раз (см. график 4 ).
Любой альтернативный киловатт, таким образом, оказывается поистине золотым. И потому не может конкурировать с традиционной генерацией.
Быстрые нейтроны
Однако поборникам новых технологий не стоит отчаиваться. Жизнеспособная альтернатива традиционной тепловой генерации все же есть, хотя и не в рамках так называемой альтернативной энергетики. Речь идет об атомной генерации.
Александр Григорьев (ИПЕМ), отдавая должное водородным накопителям энергии, которые уже в обозримом будущем могут сыграть поистине революционную роль в развитии энергетики, указывает, что первую скрипку в энергетической симфонии XXI века будет играть атомная энергетика: «У атомной энергетики есть определенная цикличность, и циклы эти связаны, как правило, с аварийными ситуациями на АЭС: Три-Майл-Айленд, Чернобыль, Фукусима — каждый такой случай останавливает распространение атомной генерации, а то и приводит к некоторому откату назад. Потом все понемногу успокаиваются и потихоньку начинают возвращаться к идее развития атомной энергетики».
Перспективным направлением атомной генерации могут стать реакторы на быстрых нейтронах. В таких реакторах существенно изменен спектр нейтронов — это нейтроны с бо́льшими энергиями, чем, скажем, в обычном российском водо-водяном энергетическом реакторе (ВВЭР), поэтому их называют реакторами на быстрых нейтронах (БН). Вместо воды, которую традиционно применяют в качестве теплоносителя, в реакторах БН используют натрий.
Россия сегодня — единственная в мире страна, которая занимается разработкой и эксплуатацией подобных реакторов. БН строили японцы, но эксплуатировать не стали. Строили и французы, однако довольно быстро свернули программу.
Как рассказал Александр Полушкин, реактор на быстрых нейтронах мощностью 350 МВт работал в Казахстане на Мангышлаке: «Отработал ресурс и был остановлен. До сих пор работает третий энергоблок на Белоярской АЭС (мощность 600 МВт). Мы продлили его эксплуатацию, он будет работать еще 15 лет. И сейчас, вот буквально в эти дни, идет подготовка к пуску на Белоярской АЭС четвертого блока мощностью 800 МВт». БН-реактор несколько дороже традиционных — на сколько именно, в «Атомстройэкспорте» пока затрудняются ответить: ждут пуска первого современного реактора этого типа на Белоярской АЭС, после чего будет дана точная оценка.