Выбрать главу

Но, строя динамичные ИК-термоизображения, удается зарегистрировать лишь те процессы, что происходят на поверхности тела, или, говоря точнее, в миллиметровом слое эпидермиса. А вот как оценить состояние внутренних органов? Ведь они в ИК-диапазоне «молчат», поскольку человеческое тело для инфракрасных волн непрозрачно.

Докладывает СВЧ-излучение

Быстро узнать температуру человека и в считанные секунды дать ответ — здоров он или заболел? — можно по каналу радиотеплового диапазона. Мозг, сердце, печень с глубины 5-10 см активно «сигналят» своим радиотепловым излучением о температурных и других жизненно важных ритмах организма. Характерная деталь: чем длиннее волны, тем с большей глубины приходит излучение. И наоборот, чем короче излучаемая волна, тем ближе к поверхности находится сигнализирующий орган.

Учтя эту тонкость и работая на более коротких волнах, исследователи прицельнее определяли параметры органа «излучателя», соответственно и его радиотепловой «портрет» получался более четким. Зато переходя на более длинные волны, удается, как уже говорилось, увеличить глубину зондирования. Компьютерная обработка приходящих с разных глубин сигналов уже сейчас позволяет воссоздать пространственную картину температурных полей организма.

Вдумаемся в этот факт, сулящий в самом недалеком будущем переворот в медицинской практике. Еще сегодня, ставя градусник под мышку больному, терапевт констатирует лишь «среднее» повышение температуры тела у своего пациента. А тут благодаря чувствительным радиометрам можно абсолютно точно указать температурящий орган.

Разумеется, чтобы уловить весьма слабый «огонек» сигнала, биообъект приходится ограждать от мощных «прожекторов» помех как природного, так и техногенного происхождения с помощью специальных экранированных камер. Для построения полной картины поля на входе измерительно-вычислительного комплекса устанавливается матричная система антенн-датчиков. Четыре чувствительных радиометра, каждый настроенный на одну из волн в диапазоне от 3 до 30 см, уверенно регистрируют температуру любой точки тела — от поверхности до четырехсантиметровой глубины.

Гак впервые в мире были получены динамические радиотепловые карты, скажем, брюшной полости, карты радиояркостной температуры головного мозга и т. д.

В волнах электрического и магнитного полей

«Человек — это хрупкий сосуд, наполненный драгоценной влагой жизни», — говорили встарь. «Наше тело — это сосуд с влагой электрохимической», — перефразировали поэтичное утверждение древних радиоэлектронщики, имея в виду, что в человеке, как в батарейке, постоянно циркулируют электрические токи. Растекаясь по всему телу, они выходят на его поверхность, содержат в себе ценную информацию о глубинных, происходящих в органах физиологических процессах. Стоит, скажем, «забарахлить мотору» — и, записывая электрокардиограмму, специалисты без особого труда определят по ее стесанным зубцам или растянутым пикам не в унисон «стучащий узел».

Впрочем, сколь бы ни было информативно электрическое поле, наружу оно выносит весьма огрубленную из-за неоднородности среды информацию о породивших их источниках.

Дело в том, что, изучая электрические поля, можно судить о физиологическом состоянии биообъекта лишь опосредованно — по измененным токам. При этом высокопроводящие ткани организма, частично экранируя низкочастотные электрические поля, искажают содержащуюся в них полезную информацию.

Однако поставив один заслон — электрический — на пути исследователей, природа в то же время сама позаботилась об обходном — магнитном — варианте. Человеческое тело, будучи диамагнитным по природе, абсолютно прозрачно (кстати, одежда тоже) для магнитных полей. Поэтому, регистрируя картину магнитных полей около человека, можно с высокой точностью определять, скажем, область патологии в миокарде или в мозге.

Факт этот удивителен хотя бы уже тем, что если б кто-нибудь лет 15–20 назад сказал, что удается «регистрировать» магнитные поля человека, физики отнеслись бы к подобному сообщению скептически. Еще бы, ведь для этого нужна аппаратура, способная реагировать на миллиардную долю эрстеда. Это в миллиарды раз меньше напряженности магнитного поля Земли.

Тем не менее сегодня в лаборатории эта сложнейшая научно-техническая задача решена с помощью магнитометрической системы, включающей сверхпроводящий квантовый интерферометр (СКВИД) и трехкомпонентную систему Гельмгольца, служащую для подавления внешних магнитных помех; исследователям удалось снять динамические магнитные карты сердца и мозга. Детально воспроизводится процесс распространения по миокарду электрического возбуждения.