Pero, ¿cuál de estas descripciones es correcta? ¿Se pierde una parte de la función de onda en los agujeros negros, o toda la información vuelve a salir, como sugiere el modelo de las p-branas? Ésta es una de las grandes preguntas de la física teórica actual. Muchos investigadores creen que trabajos recientes demuestran que la información no se pierde. El mundo es seguro y predecible, y no ocurrirá nada inesperado. Pero no resulta claro que sea así Si se considera seriamente la teoría de la relatividad general de Einstein, se debe permitir la posibilidad de que el espacio-tiempo forme nudos y se pierda información en los pliegues. Cuando la nave espacial Enterprise pasó por un agujero de gusano, ocurrió algo inesperado. Lo sé porque me hallaba a bordo, jugando a poker con Newton, Einstein y Data. Tuve una gran sorpresa. ¡Ved qué apareció sobre mis rodillas!
CAPÍTULO 5. PROTEGIENDO EL PASADO
MI AMIGO Y COLECA KIP THORNE, CON QUIEN HE CRUZADO bastantes apuestas, no es de los que siguen las líneas aceptadas en física sólo porque los demás también lo hacen. Esto le ha dado el coraje de ser el primer científico serio que se ha planteado la posibilidad práctica de los viajes en el tiempo.
Es difícil especular abiertamente sobre los viajes en el tiempo. Uno se arriesga a que le acusen de malversar dinero público en cosas tan extravagantes o a una petición de que estas investigaciones se mantengan bajo secreto para ser utilizadas en aplicaciones militares. Al fin y al cabo, ¿cómo nos podríamos proteger de alguien que tuviera una máquina del tiempo? Podría cambiar la historia y dominar el mundo. Sólo unos pocos de nosotros somos suficientemente alocados para trabajar en un tema tan políticamente incorrecto en los círculos de los físicos, pero lo disimulamos utilizando términos técnicos que disfrazan la idea de viajar en el tiempo.
La base de todas las discusiones modernas sobre viajes en el tiempo es la teoría general de la relatividad de Einstein. Como hemos visto en los capítulos anteriores, las ecuaciones de Einstein convierten el espacio y el tiempo en entidades dinámicas, al describir cómo se curvarían y se distorsionarían bajo la acción de la materia y la energía del universo. En la relatividad general, el tiempo personal que alguien mide con su reloj de pulsera siempre aumenta, tal como ocurre en la física newtoniana o en la relatividad especial. Pero ahora hay la posibilidad de que el espacio-tiempo estuviera tan deformado que se pudiera despegar en una nave espacial y regresar antes de haber salido.
Esto podría ocurrir, por ejemplo, si existieran los agujeros de gusano, los tubos de espacio-tiempo mencionados en el Capítulo 4 que conectan diferentes regiones del espacio-tiempo. La idea es hacer entrar nuestra nave espacial en la boca de un agujero de gusano y salir por la otra boca en un lugar y un tiempo diferentes.
Si existen, los agujeros de gusano solucionarían el problema de los límites de velocidad en el espacio: tardaríamos decenas de miles de años en cruzar la galaxia en una nave espacial que viajara con velocidad menor que la de la luz, como exige la relatividad. Pero, por un agujero de gusano, podríamos ir al otro lado de la galaxia y estar de vuelta para cenar. Sin embargo, es posible demostrar que si existieran los agujeros de gusano los podríamos utilizar para regresar antes de haber salido. Por lo tanto, podríamos hacer algo así como retroceder en el tiempo y dinamitar el cohete en la rampa de lanzamiento para impedir que nos lanzaran al espacio. Esto es una variación de la paradoja del abuelo: ¿qué ocurre si regresamos al pasado y matamos a nuestro abuelo antes de que fuera concebido nuestro padre?.
Naturalmente, ello sólo constituye una paradoja si creemos que al regresar al pasado tendremos libertad para hacer lo que queramos. Este libro no entrará en discusiones filosóficas sobre el libre albedrío, sino que se concentrará sobre si las leyes de la física permiten que el espacio-tiempo llegue a estar suficientemente deformado para que cuerpos macroscópicos, como por ejemplo una nave espacial, puedan regresar a su propio pasado. Según la teoría de Einstein, las naves espaciales viajan necesariamente con una velocidad menor que la de la luz y siguen en el espacio-tiempo lo que se llama trayectorias temporales. Así pues, podemos formular la pregunta en términos más técnicos: ¿admite el espacio-tiempo curvas temporales cerradas?; es decir, que regresen a su punto de comienzo una y otra vez. Me referiré a estos caminos como «bucles temporales».
Podemos intentar responder esta pregunta en tres niveles. El primero es la teoría de la relatividad general de Einstein, que supone que el universo tiene una historia bien definida y sin ninguna incertidumbre. Según esta teoría clásica, podemos tener una descripción bastante completa. Pero, como hemos visto, esta teoría no puede ser completamente correcta, porque observamos que la materia está sujeta a incertidumbre y a fluctuaciones cuánticas.
Por lo tanto, podemos plantear la pregunta sobre los viajes en el tiempo a un segundo nivel, el de la teoría semiclásica. En ella, consideramos que la materia se comporta según la teoría cuántica, con incertidumbre y fluctuaciones, pero que el espacio-tiempo está bien definido y es clásico. Ahora, la descripción resulta menos completa pero, al menos, aún tenemos alguna idea de cómo proceder.
Finalmente, hay la teoría completamente cuántica de la gravitación, sea la que sea. En ella, no sólo la materia sino también el tiempo y el espacio mismos son inciertos y fluctúan, y no resulta claro ni tan siquiera cómo plantear la cuestión de si es posible viajar en el tiempo. Quizás lo mejor que podemos hacer es preguntar cómo interpretarían sus mediciones los habitantes de regiones en que el espacio-tiempo fuera aproximadamente clásico y sin incertidumbres. ¿Pensarían que había habido un viaje en el tiempo en regiones de gravitación intensa y grandes fluctuaciones cuánticas?
Empezaremos con la teoría clásica: ni el espacio-tiempo plano de la relatividad especial (relatividad sin gravedad) ni los primeros espacio-tiempos curvados que se conocieron permiten viajar en el tiempo. Por lo tanto, resultó una auténtica conmoción para Einstein el que, en 1949, Kurt Gödel, del teorema de Gödel, descubriera un espacio-tiempo que describía un universo lleno de materia en rotación, y que tenía bucles temporales en cada punto.
La solución de Gödel exigía una constante cosmológica, que puede existir o no en la naturaleza, pero posteriormente fueron halladas otras soluciones que no requerían dicha constante. Un caso particularmente interesante corresponde a dos cuerdas cósmicas que se atraviesan mutuamente a gran velocidad.
Las cuerdas cósmicas no deben ser confundidas con las cuerdas de la teoría de cuerdas, aunque tienen alguna relación. Se trata de objetos que tienen longitud pero cuya sección transversal es minúscula. Su existencia es predicha por algunas teorías de partículas elementales. Fuera de una cuerda cósmica, el espacio-tiempo es plano. Sin embargo, es un espacio-tiempo plano al que falta un sector circular, cuyo el vértice se hallaría en la cuerda. La situación es parecida a un cono: tomemos un círculo de papel y recortémosle un sector, como una porción de pastel, cuyo vértice esté en el centro del círculo. Saquemos la pieza que hemos recortado y peguemos entre sí los bordes de la pieza restante, de manera que obtengamos un cono. Este representa el espacio-tiempo alrededor de una cuerda cósmica.
Obsérvese que como la superficie del cono es la hoja plana inicial (menos el sector circular que hemos recortado), todavía podemos llamarla «plana» excepto en el vértice. Pero en éste hay una curvatura, como lo indica el hecho de que un círculo trazado a su alrededor tiene una circunferencia menor que la que tendría un círculo del mismo radio y el mismo centro en la hoja plana original. En otras palabras, un círculo alrededor del vértice es más corto de lo que esperaríamos para un círculo de aquel radio en un espacio plano, a causa del sector que le hemos sustraído.