Выбрать главу

Como el universo de Einstein no se expande, no corresponde al universo en que vivimos, pero proporciona una base conveniente para el estudio de los viajes en el tiempo, porque es suficientemente sencillo para que se pueda efectuar la suma sobre las historias. Olvidando por un momento el viaje en el tiempo, consideremos la materia en un universo de Einstein, que gira alrededor de un eje. Si estuviéramos en éste, permaneceríamos en el mismo punto del espacio, tal como cuando estamos de pie en el centro de un tiovivo para niños. Pero si no estuviéramos en el eje, nos desplazaríamos al girar a su alrededor y, cuanto más lejos estuviéramos del eje, más rápidamente nos moveríamos. Análogamente, si el universo fuera infinito en el-espacio, los puntos suficientemente distantes del eje deberían girar con velocidad superior a la de la luz. Sin embargo, como el universo de Einstein es finito en las direcciones espaciales, hay una tasa crítica de rotación por debajo de la cual ninguna parte del universo gira con velocidad superior a la de la luz.

Consideremos ahora la suma sobre historias de una partícula en un universo rotante de Einstein. Cuando la rotación es lenta, hay muchos caminos que la partícula podría tomar utilizando una cantidad dada de energía. Así pues, la suma sobre todas las historias de la partícula en este fondo tiene una amplitud elevada. Ello significa que la probabilidad de este fondo sería elevada en la suma sobre todas las historias de espacio-tiempos curvados,- es decir, se hallaría entre las historias más probables. Sin embargo, a medida que la tasa de rotación del universo de Einstein se acercara al valor crítico, en que su borde exterior se mueve con la velocidad de la luz, sólo quedaría sobre éste un camino permitido clásicamente para la partícula, a saber, el que corresponde a la velocidad de la luz. Ello significa que la suma sobre las historias de la partícula será pequeña y, por lo tanto, la probabilidad de estos espacio-tiempos de fondo será baja en la suma sobre todas las historias de espacio-tiempos curvados. Es decir, son los menos probables.

¿Qué tienen que ver los universos rotantes de Einstein con los viajes en el tiempo y los bucles temporales? La respuesta es que son matemáticamente equivalentes a otros fondos que admiten bucles temporales. Estos otros fondos corresponden a universos que se expanden en dos direcciones espaciales pero no en la tercera dirección espacial, que es periódica. Es decir, si avanzamos una cierta distancia en esta dirección, volvemos a estar donde empezamos. Sin embargo, cada vez que hacemos el circuito en la tercera dirección espacial, nuestra velocidad en la primera o la segunda dirección recibe un impulso brusco.

Si el impulso es pequeño, no hay bucles temporales. Sin embargo, al considerar una secuencia de fondos con impulsos crecientes en la velocidad, vemos que para un cierto impulso crítico, aparecerán bucles temporales. No sorprende que este impulso crítico corresponda a la tasa crítica de rotación de los universos de Einstein. Como en estos espacio-tiempos los cálculos de la suma sobre historias son matemáticamente equivalentes, podemos concluir que su probabilidad tiende a cero a medida que se aproximan a la deformación necesaria para tener bucles temporales. En otras palabras la probabilidad de tener una curvatura suficiente para una máquina del tiempo es nula. Esto apoya lo que he llamado Conjetura de Protección de la Cronología, mencionada al fin del Capítulo 2: que las leyes de la física conspiran para impedir que los objetos macroscópicos puedan viajar en el tiempo.

Aunque los bucles temporales son permitidos por la suma sobre historias, su probabilidad es extremadamente pequeña. Basándome en argumentos de dualidad que he mencionado antes, he evaluado que la probabilidad de que Kip Thorne pudiera regresar al pasado y matar a su abuelo es menor que uno dividido por un uno seguido de un billón de billones de billones de billones de billones de ceros.

Esta probabilidad es francamente pequeña, pero si observamos atentamente la foto de Kip, podemos ver una ligera difuminación en sus bordes: corresponde a la ínfima posibilidad de que algún bastardo del futuro regrese y mate a su abuelo, de manera que él no exista realmente.

Como jugadores empedernidos, Kip y yo apostaríamos incluso contra probabilidades como ésta. El problema es que no podemos apostar el uno contra el otro, porque ahora estamos los dos en el mismo bando. Además, yo nunca apostaría con nadie más: podría venir del futuro y saber que es posible viajar en el tiempo.

Se pueden preguntar si este capítulo forma parte de un informe gubernamental sobre viajes en el tiempo. Podría ser que no estuvieran equivocados.

CAPÍTULO 6. ¿SERÁ NUESTRO FUTURO COMO STAR TREK o NO?

Cómo la vida biológica y electrónica se seguirá desarrollando en complejidad con un ritmo cada vez más rápido

EL MOTIVO DE QUE LA SERIE STAR TREK SEA TAN POPULAR ES que presenta una visión del futuro segura y reconfortante. Soy un entusiasta de esta serie, por lo cual resultó fácil persuadirme a participar en un episodio en que jugaba a póquer con Newton, Einstein y el Comandante Data. Les gané a todos pero, por desgracia, hubo una alerta roja y no pude recoger lo que había ganado.

Star Trek muestra una sociedad muy avanzada respecto a la nuestra en ciencia, tecnología y organización política (Esto último no resulta difícil). En el tiempo que va desde ahora hasta entonces debe haber habido grandes cambios, pero se supone que, en el período mostrado en la serie, la ciencia, la tecnología y la organización de la sociedad han alcanzado un nivel próximo a la perfección.

Quiero cuestionar esta imagen y preguntarnos si la ciencia y la tecnología llegarán a alcanzar un estado final estacionario. En los diez mil años transcurridos desde la última glaciación, en ningún momento la especie humana se ha hallado en un estado de conocimiento constante y tecnología fija. Incluso ha habido algunos retrocesos, como en las edades oscuras posteriores a la caída del Imperio Romano, pero la población mundial, que constituye un indicador de nuestra capacidad tecnológica de conservar la vida y alimentarnos, ha aumentado incesantemente, con sólo unas pocas caídas como la debida a la Peste Negra.

En los últimos doscientos años, el crecimiento de la población se ha hecho exponencial; es decir, la población crece cada año el mismo porcentaje. Actualmente, la tasa de crecimiento es de 1,9 por ciento anual. Esto puede parecer poco, pero significa que la población mundial se duplica cada cuarenta años.

Otros indicadores del desarrollo tecnológico reciente son el consumo de electricidad y el número de artículos científicos publicados, que también muestran crecimiento exponencial, con tiempos de duplicación menores que cuarenta años. No hay indicios de que el desarrollo científico y tecnológico se vaya a frenar y a detenerse en el futuro próximo -ciertamente no en la época de Star Trek, que se supone que ocurre en un futuro no muy lejano-. Pero si el crecimiento de población y el consumo de electricidad siguen al ritmo actual, en el año 2600 la población mundial se estará tocando hombro con hombro, y el consumo de electricidad hará que la Tierra se ponga al rojo vivo (véase la ilustración de la página opuesta).

Si se pusieran en fila todos los nuevos libros publicados, nos deberíamos desplazar a ciento cincuenta kilómetros por hora para mantenernos al frente de la hilera. Naturalmente, en el año 2600 los nuevos trabajos científicos y artísticos tendrán formato electrónico, en vez de ser libros y revistas. Sin embargo, si continuara el crecimiento exponencial, se publicarían diez artículos por segundo en mi especialidad de física teórica, y no tendría tiempo de leerlos.