Ello exigió abandonar la idea de que hay una magnitud universal, llamada tiempo, que todos los relojes pueden medir En vez de ello, cada observador tendría su propio tiempo personal. Los tiempos de dos personas coincidirían si ambas estuvieran en reposo la una respecto a la otra, pero no si estuvieran desplazándose la una con relación a la otra.
Esto ha sido confirmado por numerosos experimentos, en uno de los cuales se hizo volar alrededor de la Tierra y en sentidos opuestos dos relojes muy precisos que, al regresar, indicaron tiempos ligerísimamente diferentes. Ello podría sugerir que si quisiéramos vivir más tiempo, deberíamos mantenernos volando hacia el este, de manera que la velocidad del avión se sumara a la de la rotación terrestre. Sin embargo, la pequeña fracción de segundo que ganaríamos así, la perderíamos de sobras por culpa de la alimentación servida en los aviones.
El postulado de Einstein de que las leyes de la naturaleza deberían tener el mismo aspecto para todos los observadores que se movieran libremente constituyó la base de la teoría de la relatividad, llamada así porque suponía que sólo importa el movimiento relativo. Su belleza y simplicidad cautivaron a muchos pensadores, pero también suscitó mucha oposición. Einstein había destronado dos de los absolutos de la ciencia del siglo XIX: el reposo absoluto, representado por el éter, y el tiempo absoluto o universal que todos los relojes deberían medir. A mucha gente, esta idea le resultó inquietante. Se preguntaban si implicaba que todo era relativo, que no había reglas morales absolutas. Esta desazón perduró a lo largo de las décadas de 1920 y 1930. Cuando Einstein fue galardonado con el premio Nobel de Física en 1921, la citación se refirió a trabajos importantes, pero comparativamente menores (respecto a otras de sus aportaciones), también desarrollados en 1905. No se hizo mención alguna a la relatividad, que era considerada demasiado controvertida. (Todavía recibo dos o tres cartas por semana contándome que Einstein estaba equivocado). No obstante, la teoría de la relatividad es completamente aceptada en la actualidad por la comunidad científica, y sus predicciones han sido verificadas en incontables aplicaciones.
Una consecuencia muy importante de la relatividad es la relación entre masa y energía. El postulado de Einstein de que la velocidad de la luz debe ser la misma para cualquier espectador implica que nada puede moverse con velocidad mayor que ella. Lo que ocurre es que si utilizamos energía para acelerar algo, sea una partícula o una nave espacial, su masa aumenta, lo cual hace más difícil seguirla acelerando. Acelerar una partícula hasta la velocidad de la luz sería imposible, porque exigiría una cantidad infinita de energía. La masa y la energía son equivalentes, tal como se resume en la famosa ecuación de Einstein E=mc2. Es, probablemente, la única ecuación de la física reconocida en la calle. Entre sus consecuencias hubo el advertir que si un núcleo de uranio se fisiona en dos núcleos con una masa total ligeramente menor, liberará una tremenda cantidad de energía.
En 1939, cuando se empezaba a vislumbrar la perspectiva de otra guerra mundial, un grupo de científicos conscientes de estas implicaciones persuadieron a Einstein de que dejara a un lado sus escrúpulos pacifistas y apoyara con su autoridad una carta al presidente Roosevelt urgiendo a los Estados Unidos a emprender un programa de investigación nuclear.
Esto condujo al proyecto Manhattan y, en último término, a las bombas que explotaron sobre Hiroshima y Nagasaki en 1945. Algunas personas han acusado a Einstein de la bomba porque descubrió la relación entre masa y energía,- pero esto sería como acusar a Newton de los accidentes de aviación porque descubrió la gravedad. El mismo Einstein no participó en el proyecto Manhattan y quedó horrorizado por el lanzamiento de la bomba.
Con sus artículos revolucionarios de 1905, la reputación científica de Einstein quedó bien establecida, pero hasta 1909 no le fue ofrecido un puesto en la Universidad de Zúric, que le permitió dejar la oficina suiza de patentes. Dos años después, se trasladó a la universidad alemana de Praga, pero regresó a Zúric en 1912, esta vez a la ETH. A pesar de que el antisemitismo estaba muy extendido en gran parte de Europa, incluso en las universidades, él se había convertido en una figura académica muy apreciada. Le llegaron ofertas de Viena y de Utrecht, pero decidió aceptar una plaza de investigador en la Academia Prusiana de Ciencias en Berlín, porque le liberaba de las tareas docentes. Se desplazó a Berlín en abril de 1914 y poco después se reunieron con él su mujer y sus dos hijos. Sin embargo, el matrimonio no funcionaba demasiado bien, y su familia no tardó en regresar a Zúric. Aunque les visitó en algunas ocasiones, Einstein y su mujer acabaron por divorciarse. Más tarde, Einstein se casó con su prima Elsa, que vivía en Berlín. El hecho de que pasara los años de guerra como un soltero, sin obligaciones domésticas, podría ser una de las razones por las cuales este período le resultó tan productivo científicamente.
Aunque la teoría de la relatividad encajaba muy bien con las leyes que gobiernan la electricidad y el magnetismo, no resultaba compatible con la teoría de Newton de la gravitación. De esta ley se sigue que si se modifica la distribución de materia en una región del espacio, el cambio del campo gravitatorio debería notarse inmediatamente por doquier en el universo. Ello no sólo significaría la posibilidad de enviar señales con velocidad mayor que la de la luz (lo cual está prohibido por la relatividad), para saber qué significa instantáneo también exigiría la existencia de un tiempo absoluto o universal, que la relatividad había abolido en favor de un tiempo personal.
Einstein ya era consciente de esta dificultad en 1907, cuando todavía estaba en la oficina de patentes de Berna, pero hasta que estuvo en Praga en 1911 no empezó a pensar seriamente en ella. Cayó en la cuenta de que hay una relación profunda entre aceleración y campo gravitatorio. Alguien que se hallara en el interior de una caja cerrada, como por ejemplo un ascensor, no podría decir si ésta estaba en reposo en el campo gravitatorio terrestre o si estaba siendo acelerada por un cohete en el espacio libre. (Naturalmente, ello pasaba antes de la época de
Si la Tierra fuera plana, tanto podríamos decir que la manzana cayó sobre la cabeza de Newton debido a la gravedad o debido a que Newton y la superficie de la Tierra se estaban acelerando hacia arriba. No obstante, esta equivalencia entre aceleración y gravedad no parecía funcionar para una Tierra esférica -ya que observadores que estuvieran en las antípodas deberían estar acelerándose en sentidos opuestos, pero permaneciendo a la vez a la misma distancia entre sí.
Pero a su regreso a Zúric en 1912, Einstein tuvo la idea genial de que dicha equivalencia funcionaría si la geometría del espacio-tiempo fuera curva en lugar de plana, como se había supuesto hasta entonces. Su idea consistió en que la masa y la energía deformarían el espacio-tiempo en una manera todavía por determinar. Los objetos como las manzanas o los planetas intentarían moverse en líneas rectas por el espacio-tiempo, pero sus trayectorias parecerían curvadas por un campo gravitatorio porque el espacio-tiempo es curvo.