La supersimetría fue utilizada por primera vez para eliminar los infinitos de los campos de materia y de Yang-Mills en un espacio-tiempo en que tanto las dimensiones ordinarias como las de Grassmann eran planas, en vez de curvadas. Pero resultaba natural extenderla a situaciones en que ambos tipos de dimensiones fueran curvadas. Ello condujo a diversas teorías denominadas supergravedad, con diferentes grados de supersimetría. Una consecuencia de la supersimetría es que cada campo o partícula debería tener un «supersocio» con un espín superior o inferior en 1/2 a su propio espín.
Las energías del estado fundamental de los bosones, campos cuyo espín es un número entero (O, 1, 2, etc) son positivas. En cambio, las energías del estado fundamental de los fermiones, campos cuyo espín es un número semientero (1/2, 3/2, etc), son negativas. Como en las teorías de supergravedad hay el mismo número de bosones que de fermiones, los infinitos de orden superior se cancelan.
Quedaba la posibilidad de que pudieran subsistir sin cancelarse algunos infinitos de órdenes inferiores. Nadie tuvo la paciencia necesaria para calcular si estas teorías eran en verdad completamente finitas. Se bromeaba que un buen estudiante tardaría unos doscientos años en comprobarlo y, ¿cómo podríamos estar seguros de que no había cometido ningún error en la segunda página de los cálculos? Aun así, hacia 1985 la mayoría de los especialistas creían que casi todas las teorías de supergravedad estarían libres de infinitos.
Entonces, de repente, la moda cambió. La gente empezó a decir que no había motivos para esperar que las teorías de supergravedad no contuvieran infinitos, lo cual significaba que podrían resultar fatalmente erróneas como teorías. En su lugar, se proclamó que la única manera de combinar la gravedad con la teoría cuántica era una teoría llamada teoría supersimétrica de cuerdas. Las cuerdas, como sus homologas en la vida cotidiana, son objetos unidimensionales extensos: sólo tienen longitud. Las cuerdas de esta teoría se mueven en el espacio-tiempo de fondo, y sus vibraciones son interpretadas como partículas.
Si la cuerdas tienen dimensiones de Grassmann y dimensiones ordinarias, las vibraciones corresponderán a bosones y fermiones. En este caso, las energías positivas y negativas del estado fundamental se cancelarían exactamente, de manera que no habría infinitos de ningún orden. Se dijo que las supercuerdas eran la Teoría de Todo.
Los futuros historiadores de la ciencia encontrarán interesante explorar el cambio de marea de opinión entre los físicos teóricos. Durante algunos años, las cuerdas reinaron sin rival y la supergravedad fue menospreciada como una simple teoría aproximada, válida tan sólo a bajas energías. El calificativo de «bajas energías» era considerado particularmente ominoso, aunque en este contexto bajas energías significaba que las partículas tendrían energías de al menos un millón de billones la de las partículas en una explosión de TNT. Si la supergravedad era tan sólo una aproximación de baja energía, no podía pretender ser la teoría fundamental del universo. En su lugar, se suponía que la teoría subyacente era una de las cinco posibles teorías de supercuerdas. Pero ¿cuál de estas cinco teorías describía nuestro universo? Y, ¿cómo podría formularse la teoría de cuerdas más allá de la aproximación en que éstas son representadas como superficies con una dimensión espacial y otra temporal, desplazándose en un espacio-tiempo plano? ¿No curvarían dichas cuerdas el espacio-tiempo de fondo?
En los años siguientes a 1985, fue haciéndose cada vez más evidente que la teoría de cuerdas no era la descripción completa. Para empezar, se advirtió que las cuerdas son tan sólo un miembro de una amplia clase de objetos que pueden extenderse en más de una dimensión. Paul Townsend, que, como yo, es miembro del Departamento de Matemáticas Aplicadas y Física Teórica de Cambridge, y a quien debemos muchos de los trabajos fundamentales sobre estos objetos, les dio el nombre de «p-branas». Una p-brana tiene longitud en p dimensiones. Así pues, una p= 1 brana es una cuerda, una p = 2 brana es una superficie o membrana, y así sucesivamente. No parece haber motivo alguno para favorecer el caso de las cuerdas, con p = 1, sobre los otros posibles valores de p, sino que deberíamos adoptar el principio de la democracia de las p-branas: todas las p-branas son iguales.
Todas las p-branas podían ser obtenidas como soluciones de las ecuaciones de las teorías de supergravedad en 10 o 11 dimensiones. Aunque 10 o 11 dimensiones no parecen tener nada que ver con el espacio-tiempo de nuestra experiencia, la idea era que las otras 6 o 7 dimensiones están enrolladas con un radio de curvatura tan pequeño que no las observamos, sólo somos conscientes de las cuatro dimensiones restantes, grandes y casi planas.
Debo decir que, personalmente, me he resistido a creer en dimensiones adicionales. Pero como soy un positivista, la pregunta «¿existen realmente dimensiones adicionales?» no tiene ningún significado para mí. Todo lo que podemos preguntar es si los modelos matemáticos con dimensiones adicionales proporcionan una buena descripción del universo. Todavía no contamos con ninguna observación que requiera dimensiones adicionales para ser explicada. Sin embargo, hay la posibilidad de que podamos observarlas en el Gran Colisionador de Hadrones LHC (Large Hadron Collider), de Ginebra. Pero lo que ha convencido a mucha gente, incluido yo, de que deberíamos tomarnos seriamente los modelos con dimensiones adicionales es la existencia de una red de relaciones inesperadas, llamadas dualidades, entre dichos modelos. Estas dualidades demuestran que todos los modelos son esencialmente equivalentes,- es decir, son tan sólo aspectos diferentes de una misma teoría subyacente que ha sido llamada teoría M. No considerar esta red de dualidades como una señal de que estamos en buen camino sería como creer que Dios puso los fósiles en las rocas para engañar a Darwin sobre la evolución de la vida.
Estas dualidades demuestran que las cinco teorías de supercuerdas describen la misma física, y que también son físicamente equivalentes a la supergravedad. No podemos decir que las supercuerdas sean más fundamentales que la supergravedad, o viceversa, sino que son expresiones diferentes de la misma teoría de fondo, cada una de las cuales resulta útil para cálculos en diferentes tipos de situaciones. Como las teorías de cuerdas no tienen infinitos resultan adecuadas para calcular lo que ocurre cuando unas pocas partículas de altas energías colisionan entre sí y se esparcen. Sin embargo, no resultan muy útiles para describir cómo la energía de un gran número de partículas curva el universo o forma un estado ligado, como un agujero negro. Para estas situaciones es necesaria la supergravedad, que es básicamente la teoría de Einstein de los espacio-tiempos curvados con algunos tipos adicionales de materia. Ésta es la imagen que utilizaré principalmente en lo que sigue.
Para describir cómo la teoría cuántica configura el tiempo y el espacio, resulta útil introducir la idea de un tiempo imaginario. Tiempo imaginario suena a ciencia ficción, pero es un concepto matemáticamente bien definido: el tiempo expresado en lo que llamamos números imaginarios. Podemos considerar los números reales, por ejemplo 1, 2, -3,5 y otros, como la expresión de posiciones en una recta que se extiende de izquierda a derecha: el cero en el centro, los números reales positivos a la derecha y los números reales negativos a la izquierda.