Выбрать главу

Без сомнения, поиск законченного и удобного вычислительного формализма теории суперструн сулит еще более грандиозные сюрпризы. Уже сейчас в исследованиях по М-теории мы увидели скрывающуюся за планковской длиной новую область Вселенной, в которой, возможно, нет понятия пространства и времени. И вот противоположная крайность: мы видели, что наша Вселенная может оказаться всего лишь одним из неисчислимых пузырей пены на поверхности широкого и турбулентного космического океана мульти-вселенной. Эти рассуждения сейчас кажутся невероятными, но они могут предвещать следующий скачок в нашем понимании Вселенной.

И в то время как наши взоры обращены в будущее в предвкушении грядущих чудес, мы можем оглянуться назад и изумиться проделанному пути. Поиск фундаментальных законов Вселенной — это определенно человеческая драма, которая укрепила разум и обогатила дух людей. Вот яркое описание Эйнштейна его собственного поиска смысла гравитации: «Годы беспокойного поиска во тьме с огромной жаждой результата, чередованием уверенности и опустошения, и, наконец, прорывом к свету»8'. Без сомнения, эта фраза — свидетельство человеческой борьбы. Мы все, каждый по-своему, искатели истины, и мы все жаждем ответа на вопрос, зачем мы в этом мире. Взбираясь вместе на гору познания, физики следующих поколений крепко стоят на плечах предыдущих, смело устремляясь к вершине. Удастся ли кому-нибудь из наших потомков получить полную картину и увидеть обширную и элегантную Вселенную во всей ее ослепительной красе? Мы не можем этого предсказать. По мере того как каждое новое поколение взбирается немного выше, мы понимаем изречение Якоба Броновски: «В каждом веке есть поворотный момент, новый способ видения и признания согласованности мира»9). И так как наше поколение уже восхищается новым видением Вселенной — нашим новым способом признания согласованности мира, мы выполнили часть задачи, построив свою ступеньку на лестнице, ведущей человека к звездам.

Примечания

Глава 1

1. Таблица справа — расширенный вариант табл. 1.1. В нее входят массы и константы взаимодействия элементарных частиц всех трех семейств. Кварк каждого типа может обладать тремя значениями сильного заряда, которые названы (довольно причудливо) цветами. Приведенные значения константы слабого взаимодействия представляют собой, строго говоря, «третью компоненту» слабого изоспина. (Мы не привели «правосторонние» компоненты частиц — они отличаются отсутствием заряда слабого взаимодействия.)

2. Помимо показанных на рис. 1.1 петель (замкнутых струн), могут также существовать струны со свободными концами (так называемые открытые струны). Чтобы упростить изложение, в большей части книги мы ограничимся замкнутыми струнами, хотя практически все, о чем мы будем говорить, справедливо для струн обоих типов.

3. Из письма Альберта Эйнштейна к другу. Написано в 1942 г., цитируется по книге: Tony Hey, Patrick Wallers, Einstein's Mirror. Cambridge, Eng.: Cambridge University Press, 1997.

4. Steven Weinberg, Dreams of a Final Theory. New York: Pantheon, 1992, p. 52. (Рус. пер.: Вайнберг С. Мечты об окончательной теории. М: УРСС, 2004.)

5. Интервью с Эдвардом Виттеном, 11 мая 1998 г.

Глава 2

1. Присутствие массивных тел, подобных нашей Земле, усложняет картину за счет добавления гравитационных сил. Поскольку мы сфокусируем свое внимание на движении в горизонтальном, а не в вертикальном направлении, можно игнорировать присутствие Земли. В следующей главе мы подробно рассмотрим гравитацию.

2. Если выражаться более точно, 300 000 км/с — это скорость света в вакууме. Когда свет распространяется в какой-либо среде, например в воздухе или стекле, его скорость уменьшается, подобно тому, как камень, брошенный со скалы, замедляет свое движение, войдя в воду. Поскольку замедление скорости света в среде по отношению к его скорости в вакууме не оказывает никакого влияния на рассматриваемые нами релятивистские эффекты, мы будем его в дальнейшем игнорировать.

3. Для читателей, любящих математику, заметим, что эти наблюдения могут быть выражены в количественной форме. Например, если движущиеся световые часы имеют скорость и, а фотон совершает свое движение «туда и обратно» за t секунд

(по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу, световые часы пройдут расстояние vt. Используя теорему Пифагора, можно рассчитать длину пути по диагонали на рис. 2.3.