2. Цитируется по книге: Timolhy Ferris, The Whole Shebang. New York: Simon Schuster, 1997, p. 97.
3. Если вы все еще озабочены тем, как вообще что-либо может происходить в пустом пространстве, вы должны понять, что соотношение неопределенностей накладывает ограничения на то, насколько «пустой» может в действительности быть область в пространстве; оно изменяет наше понимание пустого пространства. Например, применительно к волновым возмущениям поля (таким, как электромагнитные волны, распространяющиеся в электромагнитном поле) соотношение неопределенностей утверждает, что амплитуда волны и скорость изменения амплитуды связаны тем же самым отношением обратной пропорциональности, которое выполняется для положения частицы и ее скорости. Чем точнее указана амплитуда, тем менее точно мы знаем скорость, с которой она изменяется. Когда мы говорим, что область в пространстве является пустой, мы обычно имеем в виду, что, помимо всего прочего, в ней не распространяются волны и что все поля имеют нулевую интенсивность. Пользуясь грубым, но очень наглядным языком, можно перефразировать данное выражение, сказав, что амплитуды всех волн, проходящих через данную область, в точности равны нулю. Однако если амплитуды точно известны, то согласно соотношению неопределенностей это означает, что скорость изменения амплитуды является совершенно неопределенной и может принимать любое значение. Но если амплитуда изменяется, это означает, что в следующий момент она уже не может быть нулевой, даже несмотря на то, что область пространства по-прежнему остается «пустой». Опять же, в среднем поле будет нулевым, поскольку в одних областях оно будет принимать положительные значения, а в других — отрицательные; средняя суммарная энергия области не изменится. Но это верно только в среднем. Квантовая неопределенность предполагает, что энергия поля (даже в пустой области пространства) флуктуирует от больших значений к меньшим. При этом амплитуда флуктуации увеличивается по мере уменьшения расстояний и промежутков времени, и которых исследуется эта область. Согласно формуле Е = тс2 энергия, заключенная в таких кратковременных флуктуациях, может быть преобразована в массу путем мгновенного образования пары, состоящей из частицы и соответствующей античастицы, которые затем быстро аннигилируют, чтобы сохранить средний баланс энергии.
4. Даже несмотря на то. что первоначальное уравнение Шредингера (то, в котором учитывалась специальная теория относительности) не давало точного описания квантово-механических характеристик электронов в атомах водорода, ученые вскоре поняли, что это ценный инструмент при использовании в надлежащем контексте, который и сегодня еще не вышел из употребления. Однако к тому времени, как Шредингер опубликовал свое уравнение, его опередили Оскар Клейн и Уолтер Гордон, поэтому его релятивистское уравнение носит название уравнения «Клейна-Гордона».
5. Для математически подготовленного читателя заметим, что принципы симметрии, используемые в физике элементарных частиц, обычно основаны на группах, чаще всего на группах Ли. Элементарные частицы систематизируются по представлениям различных групп; уравнения, описывающие эволюцию частиц во времени, должны удовлетворять соответствующим преобразованиям симметрии. Для сильного взаимодействия такой группой симметрии является группа SU(3) (аналог обычных трехмерных вращений, но в комплексном пространстве), при этом три цветовых заряда кварка заданного типа преобразуются по трехмерному представлению. Смещение (от красного, зеленого, синего к желтому, индиго и фиолетовому), которое упомянуто в тексте, если быть более точным, представляет собой SU(3) преобразование, примененное к «цветовым координатам» кварка. Калибровочной является симметрия, в которой групповые преобразования могут зависеть от точек пространства-времени: в этом случае «вращение» цветов кварка будет происходить по-разному в различных точках пространства и в различные моменты времени.
6. При разработке квантовых теорий трех негравитационных взаимодействий физики также столкнулись с вычислениями, которые приводили к бесконечным результатам. Однако со временем ученые осознали, что от бесконечностей можно из-
бавиться с помощью процедуры, известной как перенормировка. Бесконечности, возникающие при попытках объединить общую теорию относительности и квантовую механику, являются гораздо более серьезными, от них нельзя избавиться с помощью перенормировки. Позднее стало ясно, что бесконечные результаты сигнализируют о том, что теория используется за пределами области своей применимости. Поскольку цель исследований — «окончательная» или «последняя» теория, область применимости которой в принципе не ограничена, физики ищут теорию, в ответах которой не появлялись бы бесконечные величины, независимо от того, насколько экстремальной является анализируемая физическая система.