7. Величину планковской длины можно получить с использованием простых рассуждений, основанных на том, что физики называют размерным анализом. Идея состоит в следующем. Когда та или иная теория формулируется в виде набора уравнений, то чтобы теория приобрела связь с действительностью, абстрактным символам должны быть поставлены в соответствие физические характеристики реального мира. В частности, нужно ввести систему единиц измерения. Например, если мы обозначим некоторую длину символом а, то у нас должна быть шкала для интерпретации этого значения. В конце концов, если уравнение говорит нам, что искомая длина равна 5, мы должны знать, означает ли это 5 см, 5 км или 5 световых лет и т. п. В теории, которая включает в себя обшую теорию относительности и квантовую механику, естественный выбор единиц измерения выглядит следующим образом. В природе есть две константы, которые входят в уравнения общей теории относительности: скорость света с и ньютоновская гравитационная постоянная С Квантовая механика определяется постоянной Планка. Исследуя единицы, в которых выражены эти константы (например, с представляет собой скорость и поэтому выражается как расстояние, деленное на время, и т.п.), можно заметить, что величина имеет размерность длины; ее значение составляет 1,616 х 10— 33 см. Это и есть планковская длина. Поскольку она содержит гравитационный и пространственно-временной параметры (G и с), а также квантово-механическую константу (), она устанавливает шкалу для измерений (естественную единицу длины) для любой теории, которая пытается объединить обшую теорию относительности и квантовую механику. Когда мы используем в тексте выражение «планковская длина», мы часто имеем в виду приближенное значение, отличающееся от 10-33 см не более чем на несколько порядков.
8. В настоящее время, помимо теории струн, активно развиваются два других подхода к объединению общей теории относительности и квантовой механики. Один из них, возглавляемый Роджером Пенроузом из Оксфордского университета, известен под названием теории твисторов. Другой подход, появление которого отчасти было инициировано работами Пенроуза, развивается Абхаем Аштекаром из университета штата Пенсильвания, и получил название метода новых переменных. Мы не будем рассматривать эти подходы в данной книге, однако появляются все более обоснованные предположения о том, что они могут иметь глубокую связь с теорией струн, и, возможно, все три подхода ведут к одному и тому же решению проблемы объединения общей теории относительности и квантовой механики.
Глава 6
1. Знающий читатель поймет, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в главах 12 и 13.
2. Интервью с Джоном Шварцем, 23 декабря 1997 г.
3. Схожие предположения были независимо высказаны Тамиаки Йонея, а также Коркутом Бардакчи и Мартином Гальперном. Значительный вклад в разработку теории струн на ранних этапах ее существования был также сделан шведским физиком Ларсом Бринком.
4. Интервью с Джоном Шварцем. 23 декабря 1997 г.
5. Интервью с Майклом Грином, 20 декабря 1997 г.
6. Стандартная модель предлагает механизм, дающий частицам массу, так называемый механизм Хиггса, получивший свое имя в честь шотландского физика Питера Хиггса. Однако с точки зрения объяснения значений масс частиц, задача здесь просто перекладывается на гипотетическую «частицу, дающую массу» — хиггсовский бозон. В настоящее время ведутся поиски этой частицы, но, опять же, даже если удастся обнаружить ее и определить ее свойства, они будут представлять собой входные данные для стандартной модели, не имеющие никакого теоретического объяснения.
7. Для читателей, имеющих математическую подготовку, укажем, что связь между модами колебаний струны и константами взаимодействия может быть более точно описана следующим образом. При квантовании струны ее возможные состояния, как и состояния любой квантово-механической системы, могут быть представлены векторами в гильбертовом пространстве. Эти векторы могут быть разложены по собственным значениям некоторого набора коммутирующих эрмитовых операторов. Среди этих операторов имеется гамильтониан, собственное значение которого дает энергию и, следовательно, массу этой колебательной моды, а также операторы, генерирующие различные калибровочные симметрии этой теории. Собственные значения этих последних операторов и дают константы взаимодействия, которые несут соответствующие колебательные моды струны.