Выбрать главу

8. Основываясь на догадках, сделанных в ходе второй революции в теории суперструн (обсуждаемой в главе 12), Виттен и Джо Ликкен (из Национальной лаборатории высокоэнергетических исследований) нашли маленькую, но возможную лазейку

в этом заключении. Используя ее, Ликкен предположил, что струны могут находиться под гораздо меньшим натяжением, и, следовательно, иметь гораздо больший размер, чем считалось первоначально. В действительности они могут оказаться столь большими, что могут быть обнаружены с помощью ускорителей частиц следующего поколения. Если эта маловероятная возможность окажется реальностью, открываются волнующие перспективы того, что многие замечательные следствия теории струн, обсуждаемые в этой и в последующих главах, смогут быть экспериментально проверены в течение ближайшего десятилетия. Но, как мы увидим в главе 9, даже в случае более «традиционного» сценария, разделяемого специалистами по теории струн, согласно которому струны обычно имеют длину порядка I0— 33 см, остаются косвенные методы экспериментальной проверки. 9. Знающий читатель поймет, что фотон, образовавшийся при столкновении электрона и позитрона, является виртуальным и, следовательно, должен быстро высвободить свою энергию путем образования пары частица-античастица. 10. Конечно, камера работает, улавливая отражающиеся от интересующих нас объектов фотоны и регистрируя их на фотопленке. Использование камеры в этом примере является символическим, поскольку мы не представляем себе фотонов, отражающихся от сталкивающихся струн. Мы просто хотим зарегистрировать на рис. 6.7 в всю историю взаимодействия. Сказав это, мы должны обратить ваше внимание на один тонкий момент, о котором умалчивает обсуждение в основном тексте. В главе 4 мы узнали, что квантовая механика может быть сформулирована с использованием фейнмановского метода суммирования по траекториям, в котором движение объектов анализируется путем суммирования вклада всех возможных траекторий, ведущих от выбранной начальной точки к некоторой конечной (каждой траектории в методе Фейнмана сопоставляется статистический вес). На рис. 6.6 и 6.7 мы показали вклад бесконечного числа возможных траекторий, по которым точечные частицы (рис. 6.6) или струны (рис. 6.7) следуют от начальной точки к пункту назначения. Однако приводимое в разделе обсуждение в равной мере применимо и к любой другой возможной траектории, а значит и ко всему квантово-механическому процессу в целом. (Фейнмановская формулировка квантовой механики точечных частиц с использованием подхода, основанного на суммировании по траекториям, была обобщена на случай теории струн в работах Стэнли Мандельстама из университета штата Калифорния в Беркли и Александра Полякова, в настоящее время работающего на физическом факультете Принстонского университета.)

Глава 7

1. Цитируется по книге R. Clark, Einstein: The Life and Times. New York: Avon Books, 1984, p. 287.

2. Если говорить более точно, спин, равный 1/2, означает, что момент импульса электрона, связанный с его спином, составляет

3. Открытие и развитие понятия суперсимметрии имеет непростую историю. В дополнение к тем, кто указан в тексте, основополагающий вклад внесли Р. Хааг, М. Сониус, Дж. Т. Лопушанский, Ю. А. Гольфанд, Е. П. Лихтман, Дж. Л. Шервэ, Б.Сакита, В. П. Акулов, Д. В. Волков и В. А. Сорока. Некоторые из их работ вошли в обзор Rosanne Di Stefano, Notes on the Conceptual Development of Supersymmetry. Institute for Theoretical Physics, State University of New York at Stony Brook, preprint ITP-SB-887S.

4. Для читателя, имеющего математическую подготовку, заметим, что это расширение включает дополнение обычных декартовых координат в пространстве-времени новыми, квантовыми координатами, скажем и и v, которые антикоммутируют: и х v — -v x и. Это позволяет рассматривать суперсимметрию как симметрию относительно трансляций в кванюво-механическом расширении пространства-времени.

5. Для читателя, интересующегося деталями этого технического вопроса, заметим следующее. В примечании 6 к главе 6 мы упоминали, что стандартная модель вводит «частицу, даюшую массу», хиггсовский бозон, которая генерирует измеряемые экспериментально массы элементарных частиц, перечисленных в табл. 1.1 и 1.2. Для того чтобы эта процедура работала, хиггеовская частица сама по себе не должна быть слишком тяжелой: проведенные исследования показывают, что ее масса, во всяком случае, не должна превышать примерно I 000 масс протона. Однако окаилось, что квантовые флуктуации могут вносить значительный вклад в массу хиггеовской частицы: это, в принципе, может приводить к массам, близким к планковской. Тем не менее теоретикам удалось установить, что можно избежать этого результата, указывающего на серьезный дефект стандартной модели, путем тонкой настройки некоторых параметров стандартной модели (прежде всего так называемой голой массы хиггеовской частицы) с точностью порядка 10-15. что позволяет нейтрализовать влияние квантовых флуктуации па массу хиггсовской частицы.