Выбрать главу

Эти пояснения дают некоторое представление о том, почему расстояния, измеренные с помощью намотанных и ненамотанных струн, обратно пропорциональны друг другу. Однако, так как данный момент достаточно тонкий, возможно, имеет смысл привести технические подробности для читателя, склонного к математическому образу мышления. В обычной квантовой механике точечных частиц расстояние и импульс (по существу, энергия) связаны преобразованием Фурье. Иными словами, собственный вектор оператора координаты \х) на окружности радиусом R можно определить как, где р = v/R, а \р) есть собственный вектор оператора импульса (прямой аналог того, что мы называли общей колебательной модой струны — движение без изменения формы). В теории струн, однако, есть еще один собственный вектор оператора координаты, определяемый состояниями намотанной струны:,

где — собственный вектор для намотанной струны с. Из этих определений немед-

ленно следует, что х периодична с периодом 2?R, а х периодична с периодом 2?/R, так что х есть координата на окружности радиусом R, а — координата на окружности радиусом 1/R. Более конкретно, можно рассмотреть два волновых пакета, распространяющихся из начала координат и эволюционирующих во времени, с помощью которых можно дать практическое определение расстояния. Радиус окружности, измеренный с помощью каждого из пакетов, будет пропорционален времени возвращения пакета в исходную точку. Так как состояние с энергией Е эволюционирует с фазовым множителем, пропорциональным Et, видно, что время, а, следовательно и радиус, равны t ~ 1/Е ~ R для колебательных мод и t ~ 1/Е ~ 1/R для топологических мод.

5. Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби-Яу, как указано в примечании 16 к главе 9. Эта величина равна абсолютному значению разности

где обозначает число Ходжа (p,q). С точ-

ностью до константы эти значения равны числу нетривиальных гомологии 3-циклов (трехмерных отверстий) и числу гомологии 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами четномерных и нечетномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби-Яу отличаются перестановкой соответствующих чисел Ходжа и, то число семейств частиц — полное число отверстий — не изменится.

6. Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби-Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.

7. Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание 7 к главе 8).

Глава 11

1. Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается

однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определенном контексте может с ним отождествляться.

2. Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби-Яу. Далее используется тот факт, что при определенных условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.

3. К. С. Cole, New York Times Magazine, October 18, 1987, p. 20.

Глава 12

1. Цитируется по книге: John D. Barrow, Theories of Everything. New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б. Г. Эйнштейн: Жизнь. Смерть. Бессмертие. М: Наука, 1980, с. 363.)