Рис. 14.1. Временная шкала эволюции и ключевые моменты в истории Вселенной.
Итак, согласно современной теории, эволюция Вселенной на временном интервале от момента сразу за планковским временем до настоящего времени выглядит так, как показано на рис. 14.1.
Нам осталось выяснить, что происходит на коротком отрезке времени от момента Большого взрыва до планковского времени на рис. 14.1. Если непосредственно применять уравнения общей теории относительности к этой области, они будут свидетельствовать о том, что по мере приближения к моменту Большого взрыва Вселенная продолжает сжиматься, а ее температура и плотность продолжают увеличиваться. В нулевой момент времени размер Вселенной становится равным нулю, а температура и плотность обращаются в бесконечность, и это явный признак того, что данная теоретическая модель Вселенной, прочно базирующаяся на классическом описании гравитации в общей теории относительности, теряет всякий смысл.
Природа настойчиво указывает, что при таких условиях мы должны объединить общую теорию относительности с квантовой теорией, другими словами, использовать теорию струн. В настоящее время космологические исследования в рамках теории струн находятся на раннем этапе развития. Методы теории возмущений могут, в лучшем случае, дать самое смутное представление о происходящем, так как анализ экстремальных энергий, температур и плотностей требует большей точности. И хотя в ходе второй революции в теории суперструн были предложены методы, позволяющие обойти теорию возмущений, пройдет некоторое время до того, как эти методы будут достаточно развиты, и их можно будет применять к расчетам космологических эффектов. Однако, как мы сейчас обсудим, в последнее десятилетие физики уже сделали первые шаги к пониманию струнной космологии. Вот что они обнаружили.
Оказывается, есть три важнейших пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, все более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод оказывает огромное влияние на наше понимание структуры Вселенной в сам момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, как мы вскоре увидим, крайне важно и в космологии. И, наконец, число пространственно-временных измерений в теории струн больше четырех, поэтому космология должна описывать эволюцию всех этих измерений. Обсудим эти три пункта более подробно.
В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. Но в этот момент температура достигнет максимума и начнет уменьшаться. На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты (следуя Бранденбергеру и Вафе), что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Но из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. А так как температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и ее дальнейшему снижению. Подробные вычисления Бранденбергера и Вафы подтверждают, что так оно и происходит на самом деле.