Однако в течение последнего десятилетия накопилось достаточно много наблюдательных данных, подтверждающих существование черных дыр. Конечно, поскольку они являются черными, их нельзя наблюдать непосредственно, исследуя небосвод с помощью телескопа. Вместо этого астрономы пытаются обнаружить черные дыры по аномальному поведению обычных излучающих свет звезд, расположенных поблизости от горизонтов событий черных дыр. Например, когда частицы пыли и газа из внешних слоев находящихся по соседству с черной дырой обычных звезд устремляются в направлении горизонта событий черной дыры, они разгоняются почти до световой скорости. При таких скоростях трение в газопылевом водовороте засасываемого вещества приводит к выделению огромного количества тепла, заставляющего газопылевую смесь светиться, излучая обычный видимый свет и рентгеновское излучение. Поскольку это излучение генерируется вне горизонта событий,оно может избежать попадания в черную дыру. Это излучение распространяется в пространстве, оно может непосредственно наблюдаться и изучаться. Общая теория относительности детально предсказывает характеристики такого рентгеновского излучения; наблюдение этих предсказанных характеристик дает убедительные, хотя и косвенные подтверждения существования черных дыр. Например, имеется все больше свидетельств в пользу того, что очень массивная черная дыра, масса которой в два с половиной миллиона раз превосходит массу нашего Солнца, расположена в центре нашей Галактики. Но даже эти прожорливые черные дыры бледнеют по сравнению с теми, которые, по-мнению астрономов, расположены в центрах рассеянных по всему космосу сияющих ошеломляюще ярким светом квазаров. Это черные дыры, массы которых в миллиарды раз превосходят массу Солнца.
Шварцшильд умер всего через несколько месяцев после того, как нашел свое решение. Он умер от кожного заболевания, которым заразился на русском фронте. Ему было 42 года. Его трагически краткое знакомство с теорией гравитации Эйнштейна открыло одну из наиболее ярких и таинственных граней жизни Вселенной.
Второй пример, который позволил общей теории относительности нарастить мускулы, относится к возникновению и эволюции всей Вселенной. Как мы уже видели, Эйнштейн показал, что пространство и время реагируют на присутствие массы и энергии. Эта деформация пространства-времени оказывает влияние на движение других космических тел, оказавшихся поблизости от образовавшегося искривления. Точная траектория движения этих тел зависит от их собственных массы и энергии, которые, в свою очередь, оказывают влияние на кривизну пространства-времени, влияющую на движение этих тел, и так до бесконечности. Используя уравнения общей теории относительности, основанные на достижениях в описании геометрии искривленного пространства, которых добился великий математик XIX в. Георг Бернхард Риман (подробнее мы расскажем о нем ниже), Эйнштейн сумел количественно описать взаимную эволюцию пространства, времени и материи. К его великому изумлению, применение этих уравнений не к изолированной системе (такой, как планета или комета, обращающаяся вокруг Солнца), а к Вселенной в целом, привело к поразительному выводу: общий пространственный размер Вселенной должен изменяться с течением времени. Иными словами, Вселенная либо расширяется, либо сжимается, но никогда не остается в неизменном состоянии. И это явственно следовало их уравнений общей теории относительности.
Это было слишком даже для Эйнштейна. Такой вывод опрокидывал общепринятые интуитивные представления о сущности пространства и времени, сформировавшиеся в течение тысяч лет под влиянием повседневного опыта. Даже такой радикальный мыслитель не смог отказаться от представлений о вечно существующей и неизменной Вселенной. По этой причине Эйнштейн пересмотрел свои уравнения и модифицировал их, добавив дополнительный член, ставший известным как космологическая постоянная, который позволял избежать такого вывода и возвращал нас в комфортные условия статической Вселенной. Однако 12 лет спустя, проводя тщательные наблюдения за отдаленными галактиками, американский астроном Эдвин Хаббл экспериментально установил, что Вселенная расширяется. История, закрепленная ныне в анналах науки, свидетельствует о том, что Эйнштейн вернул первоначальную форму своим уравнениям, признав их временную модификацию величайшим заблуждением в своей жизни 12). Теория Эйнштейна предсказывает расширение Вселенной, вопреки первоначальному нежеланию ее автора принять этот вывод. На самом деле, в начале 1920-х гг., за несколько лет до наблюдений Хаббла, русский метеоролог Александр Фридман, используя уравнения Эйнштейна, детально продемонстрировал, что все галактики переносятся в субстрате расширяющегося пространства, быстро удаляясь друг от друга. Наблюдения Хаббла и многочисленные данные, накопленные впоследствии, полностью подтвердили это потрясающее следствие общей теории относительности. Предложив объясне-ние расширения Вселенной, Эйнштейн совершил один из величайших интеллектуальных подвигов всех времен.
Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками, можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать ее происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся все ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звезды разрушаются, и образуется раскаленная плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до еще меньшего размера. Материя, из которой состоит все: каждый автомобиль, каждое здание, каждая гора на Земле, сама Земля, Луна, Сатурн, Юпитер и все другие планеты, Солнце и все другие звезды Млечного пути, галактика Андромеда с ее 100 миллиардами звезд и все остальные 100 миллиардов галактик — все это сожмется в космических тисках до чудовищной плотности. А когда часы покажут еще более раннее время, весь космос сожмется до размеров апельсина, лимона, горошины, песчинки и даже до еще более крошечного размера. Если экстраполировать весь этот путь назад, к «началу всех начал», можно прийти к выводу, что Вселенная должна была возникнуть как точка (образ, который мы подвергнем критическому анализу в последующих главах), в которой все вещество и вся энергия были спрессованы до невообразимых плотности и температуры. Считается, что огненный шар, вырвавшийся из этой гремучей смеси в результате Большого взрыва, исторг семена, из которых в дальнейшем развилась известная нам Вселенная.
Образ Большого взрыва как космической вспышки, извергнувшей материальное содержимое Вселенной, как шрапнель из разорвавшейся бомбы, полезен для восприятия, но он может ввести в заблуждение. Когда взрывается бомба, она взрывается в определенном месте в пространстве и в определенный момент времени. Ее содержимое выбрасывается в окружающее пространство. При прокручивании вспять эволюции Вселенной, ее материя сжималась потому, что сокращалось все пространство. Размер апельсина, размер горошины, размер песчинки — обратная эволюция размеров относится ко всей Вселенной, а не к чему-то внутри Вселенной. Следуя вспять все ближе к началу, мы не найдем никакого пространства вне точечной гранаты. Большой взрыв представлял собой извержение сжатого пространства, развертывание которого, подобно приливной волне, и по сей день несет с собой материю и энергию.
В экспериментах, выполненных с использованием современной техники, не было обнаружено отклонений от предсказаний общей теории относительности. Только время сможет показать, позволит ли возрастающая точность экспериментов выявить какие-либо отклонения и, тем самым, показать, что эта теория также представляет собой лишь приближенное описание сущности мироздания. Систематическая проверка теорий со все более высокой степенью точности является, конечно, одним из путей развития науки, но это не единственный путь. На самом деле мы уже видели это: поиск новой теории гравитации был инициирован не экспериментальным опровержением теории Ньютона, а конфликтом между ньютоновской гравитацией и другой теорией — специальной теорией относительности. Только после появления общей теории относительности (как конкурирующей теории) были установлены экспериментальные изъяны в теории Ньютона, которые проявлялись в ничтожных, но поддающихся измерению расхождениях между двумя теориями. Таким образом, внутренние теоретические противоречия могутбыть такой же движущей силой прогресса, как и экспериментальные данные.