Всё, что мы видим на Земле и в небесах, по-видимому, состоит из комбинаций электронов, u-кварков и d-кварков. Не существует экспериментальных данных, указывающих на то, что какая-либо из этих трёх частиц состоит из элементов меньшего размера. Однако имеется масса данных, свидетельствующих о том, что Вселенная содержит дополнительные компоненты. В середине 1950-х гг. Фредерик Райнес и Клайд Коуэн получили решающее экспериментальное доказательство существования четвёртого типа фундаментальных частиц, названных нейтрино. Существование этих частиц было предсказано в начале 1930-х гг. Вольфгангом Паули. Нейтрино оказалось очень трудно обнаружить: это частица-призрак, которая чрезвычайно редко взаимодействует с другими видами материи. Нейтрино средней по величине энергии легко проникает сквозь многие триллионы миль свинца, которые не оказывают ни малейшего влияния на его движение. Эта информация должна принести вам значительное облегчение, поскольку прямо сейчас, когда вы читаете эту книгу, миллиарды нейтрино, испущенных Солнцем, проходят через ваше тело и через Землю в ходе долгих скитаний по космическому пространству. В конце 1930-х гг. физики, исследующие космические лучи (потоки частиц, которые бомбардируют Землю из космоса), открыли ещё одну частицу, названную мюоном. Эта частица идентична электрону, за исключением того, что она примерно в 200 раз тяжелее. Поскольку в мироздании не было ничего — ни нерешённых загадок, ни пустующих ниш, — что требовало бы существования мюона, нобелевский лауреат, специалист по физике элементарных частиц Исидор Исаак Раби приветствовал открытие мюона не слишком радостной фразой: «Ну, и кто это заказывал?» Тем не менее, мюон существовал. За ним последовали многие другие частицы.
Используя всё более мощную технику, физики продолжали сталкивать крошечные частицы материи всё более высокой энергии. При этом в течение коротких промежутков времени воссоздавались условия, не существовавшие со времён Большого взрыва. Среди образовавшихся осколков учёные искали новые фундаментальные частицы, чтобы добавить их к растущему списку элементарных частиц. Вот что они обнаружили: ещё четыре кварка — c, s, b и t, ещё одного, даже более тяжёлого, родственника электрона, названного тау-лептоном, а также ещё две частицы, свойства которых схожи со свойствами нейтрино (они получили название мюонного нейтрино и тау-нейтрино, чтобы отличить их от первого нейтрино, которое стало называться электронным нейтрино). Эти частицы образуются в соударениях при высокой энергии, они существуют только в течение коротких промежутков времени и не входят в состав обычной материи. Но и это ещё не конец истории. Каждая из этих частиц имеет соответствующую ей античастицу, обладающую такой же массой, но являющейся противоположной в некоторых других отношениях, например, противоположной по электрическому заряду (или зарядам других видов взаимодействий, обсуждаемых ниже). Например, античастица электрона называется позитроном, она имеет такую же массу, но её электрический заряд[1] равен +1, тогда как у электрона он составляет −1. При контакте вещество и антивещество взаимно уничтожаются, превращаясь в чистую энергию — вот почему антивещество, образовавшееся естественным образом, крайне редко встречается в окружающем нас мире.
Физики подметили закономерность в свойствах этих частиц (см. табл. 1.1). Частицы материи чётко разделяются на три группы, которые часто называют семействами. Каждое семейство состоит из двух кварков, электрона или одного из его родственников, и одного из типов нейтрино. Свойства соответствующих частиц в трёх семействах идентичны за исключением массы, которая последовательно увеличивается в каждом следующем семействе. В настоящее время физики исследуют структуру вещества в масштабах порядка одной миллиардной от одной миллиардной доли метра; при этом показано, что всё вещество, найденное по сей день — естественное или полученное искусственно при помощи гигантских устройств для столкновения атомов — состоит из комбинаций частиц, входящих в эти семейства, и соответствующих им античастиц.
Таблица 1.1. Три семейства фундаментальных частиц и массы частиц (в долях массы протона). Значения масс нейтрино до сих пор не удалось определить экспериментально
Семейство 1 | Семейство 2 | Семейство 3 | |||
---|---|---|---|---|---|
Частица | Масса | Частица | Масса | Частица | Масса |
Электрон | 0,00054 | Мюон | 0,11 | Тау | 1,9 |
Электронное нейтрино | < 10−8 | Мюонное нейтрино | < 0,0003 | Тау-нейтрино | < 0,033 |
u-кварк | 0,0047 | c-кварк | 1,6 | t-кварк | 189,0 |
d-кварк | 0,0074 | s-кварк | 0,16 | b-кварк | 5,2 |
1
Подразумевается, что заряды частиц выражены в единицах элементарного заряда