Было замечено, что сопротивление некоторых веществ прохождению через них электрического тока сильно уменьшается при освещении. Первоначально это наблюдалось на элементе селене. В обычных условиях селен проводит электрический ток очень плохо. Его электрическое сопротивление примерно в 70 миллиардов раз больше, чем сопротивление хорошего проводника, например меди, Если включить в цепь батареи пластинку селена, как показано на рисунке 8, то, пока свет не действует на селен, ток в цепи очень слаб, так как сопротивление селена велико. Но стоит лишь осветить селеновую пластинку, как сопротивление её резко уменьшается; ток в цепи при том же напряжении батареи сильно возрастает, Чем сильнее будет действующий на селеновую пластинку свет, тем меньше будет сопротивление селена и тем сильнее ток в цепи.
Такое изменение сопротивления вещества под влиянием освещения и объясняется внутренним фотоэффектом. На рисунке 8 вы видите, по сути дела, прибор, в котором, так же как в описанных выше фотоэлементах, сила тока регулируется силой падающего на прибор света. Такого рода приборы получили название фотосопротивлений.
Рис. 8. Схема фотосопротивления.
Кроме селеновых фотосопротивлений, в последнее время появились фотосопротивления и с другими светочувствительными веществами. Однако практически все эти приборы менее удобны, чем фотоэлементы, и применяются они поэтому сравнительно редко.
Зато имеются другие фотоэлементы, основанные также на внутреннем фотоэлектрическом эффекте.
Уже сравнительно давно было известно, что если на медной пластинке вырастить (путём нагревания на воздухе до высокой температуры) слой полупроводника электричества (вещества, очень плохо проводящего электрический ток) — закиси меди — соединения меди с кислородом, то такая пластинка будет обладать поразительным свойством: она будет пропускать электрический ток в одну сторону и не пропускать его в другую! А позднее стало известно, что таким же свойством обладают и многие другие металлы, на которые нанесён слой полупроводника, например железные пластинки, покрытые слоем селена, и другие.
Во всех этих случаях на границе между металлом и полупроводником возникает особый, так называемый «запирающий» или «вентильный» слой, через который электроны могут свободно проходить только в одну сторону, а именно — от металла к полупроводнику. В обратном же направлении — от полупроводника к металлу — электроны через этот слой проходить не могут.
Схематический разрез такой пластинки с односторонней проводимостью изображён на рисунке 9.
Рис. 9. Схематический разрез медной пластинки с «запирающим» слоем.
Следует иметь в виду, что масштабы на этом рисунке совершенно не соответствуют действительности; толщина запирающего слоя на самом деле очень мала — менее одной стотысячной доли сантиметра; слой полупроводника в действительности также очень тонок. Верхняя металлическая пластинка, наложенная на слой полупроводника, служит для того, чтобы было удобно включить пластинку в электрическую цепь.
Если такую пластинку подключить к батарее так, как показано на рисунке 10, то ток через неё не пойдёт, потому что электроны, движущиеся в цепи, должны в этом случае проходить через запирающий слой в направлении от полупроводника к металлу.
Рис. 10. В этом случае тока в цепи нет; «запирающий» слой не пропускает электроны.
А в этом направлении слой для электронов «непроницаем». Напротив, если переключить провода, т. е. соединить нижнюю металлическую пластинку с отрицательным полюсом батареи, а верхнюю — с положительным полюсом (рис. 11), то в цепи пойдёт довольно сильный ток.
Рис. 11. В этом случае в цепи идёт ток, «запирающий» слой пропускает электроны.
Теперь электроны проходят через слой в направлении металл — полупроводник; в этом направлении запирающий слой «прозрачен» для электронов (напомним ещё раз, что за направление тока в цепи принято считать то направление, в котором двигались бы положительные заряды, т. е. направление от положительного полюса батареи к отрицательному полюсу, хотя фактически ток в металлах представляет собой движение отрицательных частиц — электронов; оно происходит в обратном направлении).