Пока лучи не действуют на пластинку, тока в цепи нет. Но достаточно осветить пластинку, как в тот же момент стрелка гальванометра отклонится — в пластинках и в проволочках возникает ток электронов. Этот ток идёт от пластинки, на которую падает свет, через безвоздушное пространство внутри пузырька, к другой пластинке, а оттуда по проволоке, через гальванометр, снова к первой пластинке, т. е. по всей цепи (электрон заряжен отрицательно, а направление тока принято считать совпадающим с направлением движения положительных электрических зарядов, поэтому направление электрического тока в фотоэлементе будет обратным движению фотоэлектронов, то есть между пластинками фотоэлемента — от анода к катоду, а во внешней цепи — от катода к аноду).
Таким образом, здесь энергия лучей, поглощённых металлической пластинкой, превращается в энергию электрического тока.
Отрицательную пластинку фотоэлемента, на которую падают лучи света, принято называть катодом. Вторую пластинку называют анодом.
Однако чувствительность к свету этого фотоэлемента очень невелика: при освещении катода в нём возникает слишком слабый электрический ток. Использовать его для каких-либо практических целей ещё нельзя.
Современные фотоэлементы устроены уже иначе, но по сути дела они не отличаются от своего предка. Пришлось лишь немало поработать над тем, чтобы увеличить их чувствительность к свету и сделать их, таким образом, пригодными для практического использования (о применении фотоэлементов рассказывается в III главе).
Теперь изготовляются самые различные типы фотоэлементов. При этом фотоэлементы отличаются друг от друга не только своим устройством. Различные фотоэлементы по-разному «чувствуют» различные световые лучи. В одних фотоэлементах электрический ток возникает только при освещении, скажем, зелёными или жёлтыми лучами.
Другие работают в том случае, когда на них падает красный свет (именно в этих фотоэлементах используется избирательный, селективный, фотоэффект). Имеются фотоэлементы, которые «чувствуют» только ультрафиолетовые лучи, и т. д.
Кроме того, современные фотоэлементы делятся на две большие группы: вакуумные и газонаполненные.
Вакуумные — это такие фотоэлементы, у которых воздух из стеклянного пузырька откачан по возможности полностью.
Другие фотоэлементы — газонаполненные — заполняют каким-либо инертным газом, который не действует химически на катод, не портит его. Обычно для этой цели применяют газ аргон.
Схема устройства современного фотоэлемента показана на рисунке 5.
Рис. 5. Схема фотоэлемента с центральным анодом.
Светочувствительный слой — катод — покрывает почти всю поверхность стеклянного пузырька, за исключением! небольшого окошка для доступа света. Анод же имеет вид небольшой проволочной петли или дощечки, укреплённой внутри этого пузырька. Такие фотоэлементы производятся на наших заводах в настоящее время. Внешний вид подобного фотоэлемента вы уже видели в начале книжки, на рисунке 1.
Такая форма фотоэлементов выгодна тем, что в них очень хорошо используется свет: лучи, отражённые от какого-нибудь места катода, обязательно попадут на другое место его, затем на третье и т. д. В итоге в этом случае поглощается и используется почти весь свет, попавший внутрь фотоэлемента.
Как можно увеличить светочувствительность фотоэлемента?
Первый и простейший способ увеличения чувствительности этого прибора — как вакуумного, так и газонаполненного — к свету заключается в тем, что в цепь его включают источник электродвижущей силы — батарею с напряжением в несколько десятков, а иногда и в несколько сотен вольт. Отрицательный полюс этой батареи соединяют, как показано на рисунке 6, с катодом фотоэлемента, а положительный полюс — с его анодом.
Рис. 6. Схема фотоэлемента с электрической батареей.
Конечно, и в этом случае в темноте через фотоэлемент ток идти не будет, так как пластинки фотоэлемента разделены безвоздушным пространством или изолирующим слоем газа[3]. Но если катод фотоэлемента осветить, то с батареей мы получим при том же самом освещении во много раз более сильный ток, чем без батареи.
Заполнение фотоэлемента газом также значительно повышает его чувствительность. При одном и том же свете мы можем получить от газонаполненного фотоэлемента ток в несколько раз более сильный, чем от вакуумного. Это объясняется тем, что электроны, быстро летящие от катода к аноду, сталкиваются по пути с атомами газа и ионизуют их, т. е. выбивают из них электроны. После такого столкновения вместо одного первоначального электрона получается два электрона: один первоначальный и один новый, выбитый из атома газа. Оба они летят к аноду. На пути они снова сталкиваются с атомами газа и также ионизуют их. Таким образом вместо двух электронов получается уже четыре. Эти четыре электрона, при новых столкновениях, дают восемь электронов, и т. д. Другими словами — число свободных электронов, летящих к аноду, очень быстро нарастает. Понятно, что такое усиление фототока тем значительнее, чем выше напряжение внешней батареи.
3
На практике, благодаря тому, что стекло, из которого сделан фотоэлемент, и изоляция между электровводами не являются идеальными изоляторами, а немного проводят ток, через фотоэлемент и в темноте идёт небольшой ток; он называется темновым током фотоэлемента. Одно из важных требований к фотоэлементу — темновой ток его должен быть как можно меньше.