ВК-253. Кристалл помещают в вакуумную камеру (изолированную от внешней среды), в неё также вводится газообразная примесь, которая должна попасть в кристалл сквозь отверстия данной маски (1). Весь цикл операций, как правило, повторяют несколько раз (2) с разными масками и разными примесями и в поверхностном слое кристалла создают сложную схему. В итоге на поверхности кристалла формируют тончайшую проводниковую цепь (3).
Р-108. РАДИОСИГНАЛ, ОТРАЖЁННЫЙ ОТ КОСМИЧЕСКОГО ЗЕРКАЛА. Известно, что очень длинные радиоволны (ДВ) хорошо перекатываются через все земные неровности и даже огибают саму нашу шарообразную планету (1). Именно поэтому много лет назад первые голландские и английские радиостанции, работая в диапазоне длинных волн, поддерживали телеграфную связь с колониями, расположенными в районе Индонезии и Австралии. Станции средних волн (СВ) земную поверхность уже не огибают, и их можно услышать на расстоянии 100, в лучшем случае 200 километров. Можно ли из этого сделать вывод, что с увеличением частоты дальность передачи уменьшается? Оказывается, нельзя. Известно, что некоторые СВ-передатчики в ночное время слышны на расстояниях, измеряемых тысячами километров. Дело в том, что ночью высоко в атмосфере образуется слой с большим количеством ионов, и от этого слоя, как от зеркала, отражаются средние радиоволны, попадая на территории, удалённые от передатчика. Аналогично короткие волны (КВ), отражаясь от сильно ионизированных слоёв атмосферы (ионосферы), круглые сутки могут быть слышны на любом отдалении от места передачи (3). Много лет назад короткие волны, как диапазон ближнего действия, за ненадобностью были отданы радиолюбителям. Они-то и обнаружили дальнее распространение КВ, приняв в Европе американские передатчики. Все остальные диапазоны после КВ, которым отданы более короткие радиоволны, — это диапазоны ближнего действия. От ионосферы они не отражаются, а легко проходят сквозь неё и отправляются куда-нибудь на Марс или подальше. Реальный способ расширить зону действия этих передатчиков — установка передающих антенн на крыше очень высокого здания или на высокой металлической мачте. Диапазон ближнего действия это, с одной стороны, конечно, плохо, но, с другой стороны, хорошо. Если зона действия передатчика ограничена сотней километров, то на расстоянии 200 километров можно строить такой же передатчик и отдать ему те же рабочие частоты — передатчики мешать друг другу не будут. Ну а в каком-нибудь особом случае, когда, например, местная передача имеет мировое значение, её можно перебросить куда угодно по радиорелейной линии или через спутник-ретранслятор.
Т-217. Миллион профессий электроники. Перед нами промелькнуло десятка полтора схемных блоков, которых наверняка существуют тысячи и которые, собираясь огромными компаниями (Т-8), создают совсем уже бессчётное множество электронных схем, приборов, аппаратов, методов и систем. Иногда полезно коротко вспомнить хотя бы о некоторых из них.
Т-218. Радио: из частотной хижины в дворцы. Когда диктор объявляет: «Наша радиостанция работает на частоте 400 килогерц», — он не говорит вам всей правды. Модуляция — процесс нелинейный и сопровождается появлением в спектре новых составляющих. Это боковые частоты, они выше и ниже, чем основная, несущая частот передатчика (Р-109), который реально излучает в эфир не одну частоту, а полосу частот и её обязательно нужно доставить в приёмник. При этом ширина полосы зависит от модулирующего сигнала: при AM для музыки нужна полоса 20 кГц, при ЧМ — 150–200 кГц, для телевидения — более 6 МГц. Передатчики, чтобы не налезать друг на друга, должны соблюдать частотный интервал, и в любом диапазоне, не мешая друг другу, может работать ограниченное число радиостанций.
Первые несколько десятилетий для радио использовались лишь диапазоны средних и длинных волн (ДВ и СВ), в которых имеется «частотная жилплощадь» примерно для сотни радиовещательных станций. В начале в мире работало всего несколько радиопередатчиков, но вскоре жизнь радистов уже во многом определял термин теснота в эфире. Заметно улучшили дело короткие волны (КВ), и совершенно новые возможности появились, когда инженеры создали приборы и схемы, работающие на метровых (MB или УКВ), дециметровых (ДМВ) и сантиметровых волнах, или, иначе, на сверхвысоких частотах (СВЧ). Это огромные частотные дворцы (Т-8), только в одном СВЧ-диапазоне, не мешая друг другу, могли бы работать 30 миллионов радиовещательных станций или 5 тысяч телецентров, в то время как во всём объединённом ДВ-, СВ-диапазоне не хватит места даже для одной ТВ-программы. Если бы не новая сверхвысокочастотная радиоэлектроника, не видать бы нам ни телевидения, ни современной радиолокации, ни сотовых телефонов.