Р-121. СУММАТОР — ПРИМЕР РАССУЖДАЮЩЕЙ ЭЛЕКТРОНИКИ. В сложных электронных управляющих автоматах или в компьютерах бывает очень много различных логических элементов, которые небольшими и большими группами, или объединившись с другими элементами, например с триггерами, выполняют довольно сложные операции. Так, например, показанная на рисунке схема из четырёх логических элементов, которую обычно называют сумматор, складывает двоичные числа 0 + 0, 1 + 0, 0 + 1 и 1 + 1. Первые три операции выполняются довольно просто (0 + 0 = 0, 1 + 0 = 1 и 0 + 1 = 1), для всех трёх достаточно было бы одного логического элемента — одной схемы ИЛИ. А вот четвёртая операция (1 + 1 = 10) дело непростое. Потому что в двоичной системе счёта 1 + 1 = 10, то есть нужно в основном разряде получить 0 и единицу перенести в следующий разряд. Сейчас мы посмотрим, как решаются эти четыре задачи.
Во-первых, отметим, как при первых трёх операциях логический элемент ИЛИ, получив на свои два входа нули и единицы, выполнит все необходимые операции и мы получим на его выходе три правильных результата. Обратите внимание на то, что в нашей схеме результат получают не с этого элемента ИЛИ, а с дополнительного элемента И1, которому ИЛИ передаёт свои результаты — в первой операции 0, во второй, третьей и четвёртой 1. Но элементу И1 полученных от ИЛИ единиц недостаточно, элементу И1, чтобы выдать необходимую во втором и третьем случае 1, нужно для этого получить 1 на оба своих входа. Вторую необходимую 1 элемент И1 получит от элемента НЕ, который с элемента И2 получает 0 и выдаёт 1, поступающую на второй вход И1. Только в четвёртом случае, то есть при сложении 1 + 1, элемент НЕ с элемента И2 получает 1 и выдаёт 0 на вход И1, из-за чего он не может сработать и выдаёт 0, необходимый в этом случае для основного разряда. В то же время 1, направленная на вход элемента НЕ, по отдельному проводу ответвится и попадёт в соседний разряд — на выходе блока из четырёх логических элементов появится результат 1 + 1 = 10.
Первый удар по трудоёмкой ручной сборке электронных схем нанесли печатные платы — на них все соединительные цепи, все сотни отдельных проводков формировались в виде полосок тонкой медной фольги, причём формировались сразу, в едином технологическом процессе по имени фотолитография. В этом названии греческое слово «лито» (в переводе «камень») напоминает, что идея пришла от полиграфистов, они ещё лет двести назад использовали печатные формы на камне для тиражирования картинок.
В 1958 году, то есть примерно через 10 лет после рождения транзистора, был сделан следующий, едва ли не самый главный технологический рывок. Методами фотолитографии и введения примесей из газовой среды в одном полупроводниковом кристаллике сформировали сразу четыре транзистора, нанесли нужные соединительные линии и, как говорится, одним ударом получили электронный блок — первую полностью готовую четырёхтранзисторную интегральную схему, первый чип. В кристалле формировались также резисторы и конденсаторы, роль последних взял на себя рп-переход, на который подано обратное напряжение.
Технология интегральных схем быстро продвигалась вперёд и вскоре практически вытеснила из аппаратуры основные дискретные элементы — отдельные транзисторы, резисторы, конденсаторы. Через пару лет после создания первого чипа уже серийно выпускались интегральные схемы с десятками и сотнями элементов, сегодня рядовым и, кстати, довольно дешёвым стал кристалл, в котором миллионы схемных деталей. Причём выпускаются эти шедевры автоматами, без прикосновения человеческой руки — на большой кремниевой пластине формируется сразу несколько десятков интегральных схем, затем их тщательно проверяют, тоже, разумеется, автоматически, и, наконец, разрезают на отдельные кристаллы. Здесь уместно вспомнить ещё одно великое достижение технологов и совсем уже невидимых миру машиностроителей. Сложный электронный блок уже и собирают автоматы — они сами с очень высокой точностью ставят на печатную плату детали, сразу производят все пайки, тщательно проверяют готовое изделие.
Увеличить число элементов в кристалле позволили новые технологии, а также давшийся недёшево прогресс фотолитографии. Она начинала с деталей миллиметровых размеров, затем технология преодолела микронный рубеж, и в 1998 году ведущие фирмы уже выпускали процессоры, где детали транзистора имели размер 0,25 микрона, то есть 250 нанометров. Чтобы подобная деталь стала размером с булавочную головку, её надо увеличить в 5000 раз, при таком увеличении сама булавочная головка превратится в двухэтажный дом. Через три года технологи уменьшили размер транзистора в микросхеме до 130 нанометров, ещё через три года — до 70 нанометров, а сейчас широко выпускаются микросхемы с размером деталей 45 нанометров и строятся новые заводы, которые будут делать микросхемы с транзисторами размером 22 нанометра. Если увеличить такой транзистор до размеров булавочной головки и саму её увеличить во столько же раз, то булавочная головка превратится уже в 20-этажный дом.