Вторая их профессия — излучение света. Если хорошо разогнать свободные заряды в веществе, то они будут ударять по неподвижным атомам с такой силой, что те начнут светиться, как, скажем, светится сильно нагретый кусок железа. Нить электрической лампочки светится именно потому, что в ней создаётся достаточно мощный поток свободных электронов и они с огромной силой ударяют по атомам металла, из которого изготовлена нить.
ВК-39. Мы привыкли к тому, что вес, а значит, и сила (её обычно обозначают буквой F) измеряются в граммах, килограммах и тоннах. Официально эти единицы используют для оценки массы в системе единиц СИ, которая принята в технике. А для оценки силы (веса) есть другая единица — ньютон (Н), это примерно 102 привычных грамма веса (силы), полстакана воды или молока весят примерно 1 ньютон. Иногда вес и силу указывают в килограммах, каждый из них это почти 10 ньютонов.
Р-11. БОЛЬШОЙ ВЗРЫВ — НАЧАЛО НАШЕЙ ИСТОРИИ. Примерно сто лет назад в среде физиков и астрономов началось особо активное обсуждение истории Вселенной. В значительной мере это связано с появлением новых описаний нашего мира, таких, в частности, как опубликованная в 1916 году Общая теория относительности. Глубокие размышления, смелые расчёты и, казалось бы, безупречные математические модели поначалу рисовали совершенно разные картины — от неподвижного, как бы застывшего огромного звёздного мира до мира, который родился в немыслимом взрыве и вот уже почти 15 миллиардов лет разлетается, превращаясь в атомы, пылевые облака, звёзды, галактики.
Иногда на помощь теоретическим построениям приходят результаты, так сказать, практических работ — изучения реальных астрономических характеристик, которые могут что-то рассказать о далёком прошлом Вселенной. К числу таких работ относятся опубликованные в 1929 году итоги многолетнего изучения галактик. Эту работу выполнил американский астроном Эдвин Хаббл, очень поддержав её результатами сторонников Большого взрыва. Оказалось, что все галактики как бы уходят из области, где начинался взрыв.
Движение галактик оценивалось по изменению известной длины волны (частоты) их светового излучения, которое появляется, когда электроны переходят на более близкую к ядру орбиту. Мы точно знаем появившуюся при этом частоту (длину волны) излучения, если оно создавалось в неподвижной звезде (2). Более того, заглянув в свой справочник, мы можем сказать, какое вещество создало излучение именно с этой длиной волны (частотой). Так, по спектрограмме солнечных лучей в 1868 году на Солнце был открыт химический элемент гелий, который на Земле, где гелия мало, нашли лишь через много лет.
Но если излучение создаётся в веществе, которое быстро удаляется от приёмника спектроскопа (3), то принятая им волна окажется длиннее. Это явление называется эффект Доплера, оно известно широкой публике: когда поезд удаляется от нас, гудок становится более низким, более басистым, длина услышанной нами звуковой волны становится больше. На экране спектроскопа удлинение световой волны отразится так — чёрточка, соответствующая принятой волне, сдвинется вправо, в сторону более длинных волн, чаще всего в сторону красного цвета. Как принято говорить, произойдёт красное смещение.
И ещё одна профессия движущихся зарядов, в данном случае свободных ионов. Создать поток ионов — это означает создать поток вещества. Ионы ведь тоже атомы, и не страшно, если у них недостаёт одного-двух электронов или есть лишняя пара электронов. Потому что атом — это, прежде всего, ядро, недостающие электроны всегда можно где-нибудь подхватить (Т-8), а лишние сбросить. В то же время ион хотя и атом, но не обычный, не нейтральный, а всё же особый — наэлектризованный. И можно двигать ионы электрическими силами, перебрасывать из одного района в другой. Так, например, перебрасывая из растворов на поверхность какого-либо предмета ионы меди, никеля, хрома, серебра, золота, наносят на этот предмет тонкие металлические покрытия.
Мы пока ещё, к сожалению, не готовы к рассказу о главной профессии электрического тока, то есть упорядоченного потока свободных электронов и ионов, — с их помощью можно выполнять механическую работу, например вращать дискету, двигать диффузор громкоговорителя, тянуть электропоезда. Но даже уже известные нам профессии движущихся зарядов — производство тепла, света, транспорт вещества — стоят того, чтобы подробнее познакомиться с машинами и установками, где эти движущиеся заряды работают.