Выбрать главу

Благодаря положительным зарядам на фотоаноде выделяется кислород. Пройдя по внешней цепи к металлическому катоду, электроны превращают ион водорода сначала в атомарный, а затем в молекулярный водород. В качестве фотоанода используется двуокись титана, фосфид галлия или другие полупроводники. Достигнутые коэффициенты преобразования еще очень малы, 1,5—2 процента; еще много проблем стоит перед исследователями, но их решение — вопрос времени.

Читателю уже понятно, что все электрохимические процессы являются окислительно-восстановительными, так как сопровождаются потерей или присоединением электронов. При этом на катоде проходят реакции электровосстановления, а на аноде — реакции электроокисления. Синтез сложных неорганических и органических соединений с помощью электролиза получил название электросинтеза. Процессы синтеза, как правило, многостадийны; каждой стадии соответствует определенное значение электродного потенциала. Методом электроокисления получают содержащие кислород соединения хлора с разной степенью окисленности, надсерную кислоту и ее соли, перманганат калия. Более 80 процентов окислителя для реактивного топлива — перекиси водорода и целый ряд других окислителей — гипохлорид натрия, хлораты, прехлораты, хлорная кислота, двуокись марганца и еще ряд соединений, широко используемых в технике и различных отраслях промышленности,— все это продукты электроокисления. Без неорганических окислителей и других веществ, получаемых методами электросинтеза, современную химию и представить себе невозможно.

Электросинтез, электродиализ, электрофорез

Во время работы над электролизом Фарадей обнаружил, что при электрохимическом разложении солей уксусной кислоты идет образование углеводородов. Это был первый случай электросинтеза органического соединения. Такой же электросинтез открыл в 1849 г. и немецкий химик Адольф Кольбе (1818—1884). Занимаясь электролизом щелочных солей алифатических карбоновых кислот, на платиновом аноде среди различных продуктов электролиза он обнаружил насыщенные углеводороды. Это означало, что электрический ток ведет себя как сильный окислитель. Отсутствие в реакторе химических окислителей и восстановителей гарантировало продукты высокой чистоты. В наши дни электросинтез применяют в производстве фармацевтических препаратов, витаминов, душистых веществ, мономеров. В результате окисления на аноде синтезируются некоторые органические кислоты и их эфиры — ценное сырье для синтеза пластмасс. Многие из этих веществ другим путем и получить невозможно. Ценные вещества получаются и на катоде электролизера, где происходят реакции восстановления.

Многообразие реакций в электрохимии органических соединений (электроорганике) необозримо. Этому во многом способствуют электрокаталитические способности электродов, которыми можно управлять. Свойствами катализаторов обладают платина, палладий и некоторые другие металлы, а также оксиды некоторых металлов. Немалое значение имеет и то, что напряжение и ток, при которых происходит синтез, легко регулируются, а это значит, что процесс можно полностью автоматизировать.

В 1861 г. английский исследователь Томас Грэм (1805—1869), один из основателей коллоидной химии, применил диализ для очистки коллоидных систем. Очищаемый раствор он наливал в сосуд, который был отделен от другого сосуда с чистой водой мембраной из пергамента, целлюлозы, коллодия или керамическим фильтром. В результате диффузии все растворимые низкомолекулярные компоненты удалялись через мембрану во внешний раствор. Как выяснилось, диализ значительно ускоряется благодаря наложению внешнего электрического тока. В наши дни электродиализ используется в научных исследованиях. Успехи химии белков и полимеров в немалой степени связаны с применением электродиализа для выделения ионов из соответствующих растворов.

Электродиализ служит для опреснения морской воды, очистки речной и озерной воды, очистки промышленных стоков, шахтной и рудничной воды, фракционирования вакцин, сывороток, для удаления солей из суспензий, паст, минералов. Двухкамерные, трехкамерные, многокамерные электродиализаторы имеют сложную конструкцию. Но схема опреснения морской воды, очистки речной воды или технологических вод в принципе проста. Подлежащую очистке воду подают в среднюю камеру электродиализатора. В электродные пространства через мембраны поступают ионы: катионы — в катодную камеру, анионы — в анодную. Очищенная вода постепенно переливается по сифону в другую камеру, где подвергается новой очистке. Особенно эффективен электродиализ с применением ионитовых мембран. В зависимости от знака электрического заряда на их поверхности эти мембраны пропускают преимущественно или катионы или анионы.