Выбрать главу

Ампулы Лоренцини (рис. 14) представляют собой довольно длинные (до нескольких сантиметров) трубочки-каналы, заполненные желеобразным веществом и заканчивающиеся на поверхности тела порами; внутри тела они образуют характерное расширение, в котором находятся чувствительные клетки. К каждой ампуле подходит несколько нервных веточек — обычно шесть, но иногда гораздо больше. У мраморного электрического ската их количество колеблется от 26 до 32.

Функциональное назначение ампул Лоренцини долгое время оставалось неясным. Их считали органами, выделяющими слизь, а в конце XIX в.— рецепторами гидростатического давления, предназначенными для ощущения глубины погружения рыбы. Это мнение подтверждалось отсутствием у скатов и акул плавательного пузыря — гидростатического органа костистых рыб. Правда, позднее выяснилось, что у морского тропического сома, обладающего плавательным пузырем, имеются и ампулы Лоренцини.

Электрофизиологические исследования ампул не внесли ясность в этот вопрос. Одни исследователи считали, что функция ампул терморецепторная, категорически отвергая их механорецепторную роль. Другие, наоборот, утверждали, что это механорецепторные органы, воспринимающие разницу давления внутри и снаружи ампул. Было также выдвинуто предположение об их хеморецепторной функции. Обнаружилась высокая чувствительность ампул к изменению концентрации солей в морской воде Появилась гипотеза об электрической чувствительности этих органов.

Рис. 14. Ампулы Лоренцини а — расположение ампул Лоренцини на теле морской лисицы (точками на концах трубочек отмечены места, где ампулы открываются наружу), б — две ампулы Лоренцини у акулы (сверху отверстия на коже)

Однако только последующее изучение поведения рыб, в том числе эксперименты Дийкграфа и Кальмджина, о которых уже упоминалось выше, позволили выяснить электрорецепторное назначение ампул Лоренцини. Специальные электрофизиологические исследования подтвердили высокую чувствительность ампул к электрическим полям — приблизительно 0,1 мкВ на 1 см. Если один электрод (зонд) помещался в проток ампулы, а другой — на тело рыбы, то для «срабатывания» ампулы было достаточно действия электрического тока силой всего в 0,005 мА. Если же зонд смещали в сторону от поры ампулы всего на 0,5 мм, то для достижения такого же результата силу тока приходилось заметно увеличивать. Это свидетельствует о том, что электрический ток в основном протекает по трубочке ампулы.

Описываемое явление хорошо согласуется с морфологическими и биофизическими свойствами ампул Лоренцини. Установлено, что электрическое сопротивление стенок ампулы в 160 тыс. раз больше сопротивления желе, заполняющего ее. Электропроводность морской воды и желе в протоках ампулы приблизительно одинакова, остальных частей тела рыбы — примерно в 2 раза меньше. Доказано, что протоки ампул Лоренцини являются хорошо изолированными проводниками, по которым электрический ток передается с небольшими потерями. В связи со специфическим строением ампулы электрические разряды высокой частоты затухают в ее канале быстрее, чем разряды низкой частоты. Поэтому длинные ампулы Лоренцини могут воспринимать в основном низкочастотные разряды, а короткие — высокочастотные Таким образом, ампулы Лоренцини представляют собой электрорецепторы. Однако они чувствительны и к другим раздражителям, прежде всего к механическим воздействиям. Возможно, что эти ампулы являются не только электрорецепторами, но и механорецепторами.

Как уже говорилось, высокой чувствительностью к электрическому току обладают, кроме акул и скатов, слабоэлектрические рыбы, например гнатонемус, гимнарх. У этих рыб имеются электрические рецепторы различных типов, образованные подобно ампулам Лоренцини, из органов чувств системы боковой линии. Наиболее чувствительны к электрическому раздражению ампулярные рецепторы: электрорецепторы гимнарха воспринимают напряженность электрического поля в 0,01 мкВ на 1 см.

Все исследованные электрические рецепторы слабоэлектрических рыб спонтанно генерируют импульсы определенной частоты — осцилляции Они не зависят от разрядов электрических органов рыб и сохраняются даже в том случае, если кусочки кожи, на которых расположены рецепторы, изолированы. Однако по мере приближения к рецепторам объектов, создающих внешнее электрическое поле, частота осцилляций изменяется.

Функции электрических рецепторов слабоэлектрических рыб различны. Одни непрерывно работают как гальванометры (как бы замеряя величину тока); другие же воспринимают только изменение напряжения внешнего электрического поля, определяя его фазу, т. е. работают аналогично осциллографу.