Выбрать главу

• Номинальный рабочий ток

Когда через обмотку реле проходит ток, то обычно он составляет несколько миллиампер. Иногда мощность реле выражается в милливаттах.

• Коммутируемый ток и напряжение

Максимальные значения тока и напряжения, которые с помощью контактов могут коммутировать реле. Обычно в качестве нагрузки имеется в виду «резистивная нагрузка», что означает некое пассивное устройство типа обычной лампочки накаливания. Когда же вы используете реле для включения, например, двигателя, надо учитывать, что в момент разгона двигателя в цепи будет присутствовать мощный импульс тока. В этом случае вы должны выбирать реле, рассчитанное на двойное значение тока, по сравнению тем током, который потребляет двигатель, когда он уже вращается.

Порядок действий

Поверните реле таким образом, чтобы его выводы были направлены вверх, и присоедините к ним провода и светодиоды так, как это показано на рис. 2.55, с резистором 680Ω (резистор на 1K также можно использовать, если у вас нет сопротивления именно такого номинала). Также следует присоединить кнопочный переключатель. (Ваш кнопочный переключатель может отличаться от того, который показан, но если это кнопочный переключатель типа SPST с двумя контактами внизу, то он будет работать таким же образом.) Когда вы нажимаете кнопку, реле будет заставлять гаснуть первый светодиод и включать второй. Когда вы отпустите кнопку, первый светодиод загорится, а второй погаснет.

Как это работает

Следует собрать цепь, показанную на рис. 2.55, и сравнить ее с электрической схемой на рис. 2.56.

Рис. 2.55. Вместо некоторых соединений, выполненных проводами, которое показаны на этом рисунке, вы, как и раньше, можете использовать коммутационные провода с зажимами типа «крокодил», если они у вас, конечно, есть

Рис. 2.56. Одна из схем, выполненная с использованием условных графических обозначений

Примечание

Версии фотографий большего размера для всех схем и макетных плат можно найти в Интернете на сайте издательства англоязычного варианта этой книги: http://oreilly.com/catalog/9780596153748

Обратитесь также к рис. 2.57–2.58, на которых показано расположение выводов реле и контакты, замыкаемые внутри реле, когда через катушку пропускается электрический ток и когда этот ток отключен.

Рис. 2.57. Расположение выводов реле, нанесенных на сетку с шагом 1/10'' (2,54 мм). Это именно тот тип реле, который вам потребуется для выполнения эксперимента 8

Рис. 2.58. На рисунке показаны выводы, замкнутые при подаче рабочего напряжения на обмотку реле (справа) и когда напряжение не подано (слева)

Это двухполюсное двухпозиционное реле (DPDT), но мы используем только один полюс, игнорируя другой. Почему же нам тогда было не купить однополюсное двухпозиционное реле (SPDT)? Потому что я хочу, чтобы контакты реле были расположены именно таким образом, чтобы в дальнейшем было проще осуществить перенос данной цепи на макетную плату, что случится очень и очень скоро.

На графическом представлении схемы (см. рис. 2.56) я показал переключаемые контакты реле в состоянии, когда напряжение на обмотку реле не подано. Если же напряжение подать, то полюс реле замкнется с верхним контактом, что выглядит немного противоестественно, но часто это бывает именно так, потому что реле изготовлено именно таким образом.

Итак, когда вы будете уверены, что понимаете, как работает эта схема, наступит время перехода к следующему шагу, а именно выполнению небольшой модификации схемы в эксперименте 8, чтобы получить реле, которое должно само по себе включаться и выключаться.

Эксперимент 8. РЕЛЕЙНЫЙ ГЕНЕРАТОР

Вам понадобятся:

1. Сетевой адаптер, макетная плата, провод, кусачки для отрезания проводов и инструменты для снятия изоляции.

2. Реле с двумя направлениями и двумя положениями переключения (DPDT — double-pole double-throw) или, иначе, двухполюсное двухпозиционное, с самовозвратом (без фиксации). Количество — 1 шт.

3. Светодиоды. Количество — 2 шт.