Н. — Мощность будет 0,5 вт…
Л. — Незнайкин!!! Какую колоссальную глупость ты произвел на свет божий! Что мне с тобой делать?!
Н. — Ой, ой! Да, я вижу: напряжение равно 0,5 в, следовательно, ток 0,5 а, а мощность всего лишь 0,25 вт. Я должен был вспомнить, что мощность пропорциональна квадрату напряжения…
Л. — И мощность в 4 раза меньше первой. А так как логарифм этого числа 0,6, мы можем сказать, что вторая мощность на 0,6 бел (или 6 дб) меньше первой, и, следовательно, мы можем сказать про усилитель, что его коэффициент усиления снизился на 6 дб.
Н. — Я начинаю, понимать. Когда говорят: «Коэффициент усиления по напряжению снизился на р дб», то перед числом р подразумевается фраза: «Настолько, что выходная мощность усилителя с нагрузкой с постоянным сопротивлением снизилась на…». Это примерно так же, когда кондуктор автобуса объявляет: «Северный… занимайте места!», так как он подразумевает: «Пассажиры, едущие в направлении Северного вокзала…»
Л. — Я увел тебя в другую сторону, но поздравляю с тем, что ты так хорошо понял. Но вернемся к нашему примеру. Если коэффициент усиления по напряжению снизился до 0,7, то как это выразить в децибелах?
Н. — Попробуем разобраться. Выходное напряжение снизилось до 0,7, следовательно, выходной ток (на постоянном выходном сопротивлении) снизился во столько же раз, значит выходная мощность снизилась до 0,7 х 0,7 = 0,49 (округленно скажем до 0,5 первоначальной величины). Мощность уменьшилась в 2 раза. Посмотрев в поданную тобой таблицу логарифмов, я вижу, что логарифм 2 почти равен 0,3. Мощность снизилась на 0,3 бел, т. е. на 3 дб… Постой, ведь это как раз та цифра, которую ты недавно мне назвал!
Л. — Превосходно! Теперь представь себе, что произойдет в анодной нагрузке нашей лампы (рис. 39) на частотах выше той, которой соответствует потеря усиления в 3 дб. Ток, который проходит по С (т. е. по паразитной емкости, шунтирующей резистор R2). больше тока, проходящего по резистору R2. Основное влияние начинает оказывать ток Iс; отношение IR/Iполн быстро снижается, это же происходит и с усилением.
Рис. 39. Полный ток, протекающий R через и С, поступает на лампу. (Здесь показано условно принятое направление движения тока.)
Можно, например, сказать, что на частоте 1 Мгц, когда реактивное сопротивление С в 10 раз меньше сопротивления R2, анодная нагрузка лампы состоит только из С; следовательно, усиление может упасть в 10 раз (на самом деле падение усиления несколько меньше и коэффициент 10 справедлив для пентода, внутреннее сопротивление которого можно считать бесконечно большим по сравнению с сопротивлением R2).
Н. — Значит, конденсатор С начинает серьезно мешать, когда его реактивное сопротивление падает ниже сопротивления R2?
Л. — Именно это я пытаюсь заставить тебя сказать уже на протяжении четверти часа. Ну, так что же надлежит сделать, чтобы паразитная емкость не мешала на возможно более высокой частоте?
Н. — Уменьшить С.
Л. — Правильно, но это ты мне уже говорил. Что еще можно сделать?
Н. — Но я ничего не вижу. Может быть уменьшить величину R2?
Л. — Наконец-то!.. Конечно, Незнайкин, нужно уменьшить R2, чтобы реактивное сопротивление С (которое снижается с увеличением частоты) стало меньше сопротивления R2 на как можно более высокой частоте. Широкополосные усилители обычно рассчитываются на низкое сопротивление анодной нагрузки. В нарисованном тобой усилителе усиление снижается на 3 дб на частоте 100 кгц. А если бы сопротивление нагрузки было не 100 ком, а 1 ком, снижение усиления на 3 дб произошло бы только на частоте 10 Мгц.
Н. — А уменьшив нагрузку до 10 ом, мы расширили бы полосу до 1000 Мгц!
Л. — В принципе ты прав. Но я готов поспорить с тобой на что угодно, что при анодной нагрузке с сопротивлением 10 ом усиление твоей лампы по напряжению будет значительно меньше единицы.
Н. — Какой ужас! Об этом-то я и не подумал. Но скажи, пожалуйста, ведь и с нагрузкой 1 ком усиление тоже не очень большое?
Л. — Увы! Всякая медаль имеет свою оборотную сторону. Для улучшения дела используют пентоды с большой крутизной, что позволяет и при низком сопротивлении анодной нагрузки получить не такое уже малое усиление. Кроме того, используют известные коррекции, о которых ты уже мне говорил. В частности, можно включить небольшую катушку последовательно анодной нагрузке — параллельная коррекция (рис. 40, а); можно включить эту катушку последовательно с конденсатором связи — последовательная коррекция (рис. 40, б) или применить оба вида коррекции — комбинированная коррекция (рис. 40, в). С помощью этих коррекций, если они хорошо отрегулированы, удается почти удвоить полосу пропускания.
Рис. 40. Высокочастотную коррекцию усилителя можно осуществить с помощью катушки, включенной последовательно с анодной нагрузкой (а — параллельная коррекция), катушки, включенной последовательно с цепочкой связи между двумя каскадами (б — последовательная коррекция), или с помощью двух катушек (в — комбинированная коррекция).
Н. — И до какой частоты можно дойти при использовании всех этих средств?
Л. — Без особого труда удается сделать усилители с верхней границей до 30 или 50 Мгц. Можно еще больше расширить полосу, но для этого требуется особый усилитель, получивший название «усилителя с распределенным усилением»; это своего рода длинная линия с включенной в нее лампой, но о нем мы говорить не будем.
Н. — А можно ли устранить сдвиг фазы в такой широкой полосе частот?
Л. — Это невозможно, да, впрочем, и не нужно. Достаточно, чтобы сдвиг фазы был пропорционален частоте, но это не всегда легко осуществить.
Н. — Я догадываюсь, что последует дальше: после рассказа о способах расширения полосы пропускания усилителя в сторону высоких частот вполне логично заняться расширением полосы в сторону низких частот.
Л. — Правильно. Поэтому скажи мне, что ограничивает усиление твоего усилителя на низких частотах.
Н. — Нет ничего легче! Ограничения вносят реактивные сопротивления конденсаторов, особенно конденсаторов С1 и С2 в твоей схеме на рис. 37. конденсатор С1 вводит отрицательную обратную связь, а С2 плохо связывает два каскада. При желании бороться с этими неприятными явлениями я могу увеличить емкость этих конденсаторов.