Л. — Есть способ узнать, превысило ли число поступивших импульсов возможности нашего счетчика. Для этого достаточно после последнего триггера поставить триггер специальной конструкции, который может срабатывать только один раз. Такой триггер, например, можно собрать по схеме, приведенной на рис. 82, убрав из нее конденсатор С4. Полученное устройство при поступлении первого импульса переключится на единицу, но потом останется в этом положении, сколько бы импульсов ни пришло. Такой триггер, установленный после последнего, будет служить там в качестве системы безопасности. Если последний счетный триггер не вернется на нуль, то и триггер безопасности всегда будет стоять на нуле. Следовательно, до тех пор, пока триггер безопасности стоит на нуле, мы можем быть уверены в правильности показаний счетчика. Во всяком случае стараются поставить достаточное количество каскадов, чтобы счетчик всегда мог сосчитать поступающие импульсы без необходимости «повторять цикл», т. е. возвращать на нуль из-за превышения максимального допустимого числа.
Н. — В этих условиях я допускаю, что при достаточном количестве каскадов твой счетчик способен считать до 8192 или вдвое больше и что поэтому его можно признать взрослым. Но меня огорчает, что для определения количества поступивших импульсов приходится складывать множество чисел, некоторые из которых могут быть относительно сложными. Но это совершенно не означает, что я не вижу, какого прогресса мы достигли по сравнению с механическим счетчиком.
Л. — Твой механический счетчик проще по устройству, а его показания легче прочитать. Но я повторяю, что при удачном выборе первых триггеров в цепочке мы можем считать импульсы, следующие со скоростью нескольких миллионов и даже нескольких десятков миллионов в 1 сек.
Н. — Об этом я не думал, но тогда потребуется действительно солидное количество каскадов, иначе возможности твоего счетчика быстро окажутся недостаточными.
Л. — С этим доводом нельзя не согласиться, так как способный считать до миллиона счетчик должен иметь 20 каскадов. Но я напоминаю тебе, что эти каскады, особенно работающие в невысоком ритме, относительно просты. И я полностью согласен с тобой, что такой бинарный счетчик (работающий в бинарной системе счисления, признающей только две цифры — нуль и единицу) не очень удобен в работе. Поэтому разработали более совершенные счетчики, позволяющие считать в нашей привычной десятичной системе.
Н. — Можешь ли ты описать мне один из них… Я боюсь, как бы он не оказался ужасно сложным.
Л. — Некоторые из этих схем достаточно сложны. Мы рассмотрим только одну так называемую счетную декаду, представляющую собой электронную схему, которая по получении десяти импульсов всегда возвращается в первоначальное состояние. По получении десятого импульса она дает в канал, именуемый выходом, импульс, приводящий в действие следующую декаду.
Я покажу тебе устройство декады, разработанной инженерами фирмы Rochar, структурная схема которой изображена на рис. 117. Как ты видишь, в начале схемы стоит первый триггер с двумя устойчивыми состояниями, который я вновь изобразил в виде прямоугольника (на этот раз триггер опять собран по схеме на рис. 82).
Рис. 117. Структурная схема счетной декады, выпускаемой французской фирмой Rochar. Схема В1 с двумя устойчивыми состояниями является делителем на 2; устройство, состоящее из трех других триггеров, последовательно проходит пять возможных состояний.
Н. — Ты опять нарисовал два входа, но это не нужно, потому что ты всегда соединяешь их вместе.
Л. — Нет, не всегда. Я могу подавать на них разные сигналы, например сигналы одного типа на конденсатор С3 и другого типа на С4. По этой причине я и рассматриваю триггер как схему с двумя входами. Когда триггер используют в качестве делителя частоты на 2, входы соединяют вместе и одновременно подают на них отрицательные импульсы. Мы назвали нулевым состоянием (или состоянием покоя) положение, когда транзистор Т1 пропускает ток, а транзистор Т2 заперт. Когда триггер возвращается на нуль, резкое снижение потенциала коллектора транзистора Т1 посылает через дифференцирующую схему (из которой я изобразил здесь только конденсатор) отрицательный импульс. Поэтому, как ты видишь, на каждый второй поступивший на вход импульс в точку В приходит отрицательный импульс.
Н. — Да, и я также вижу, что этот импульс затем идет по двум направлениям: во-первых, на триггер В2, куда он странно поступает только на один вход, а, во-вторых, на схему, обозначенную на рисунке буквой G, о которой я ровным счетом ничего не могу сказать.
Л. — Попробуем рассуждать по порядку. В самом деле, сигнал в триггер В2 поступает только на базу его транзистора Т1. От первого импульса, попавшего на его левый вход, триггер опрокинется и с нуля перейдет на единицу (Т1 заперт, Т2 в состоянии насыщения). Последующие отрицательные импульсы, которые могут поступить из точки В, не окажут на него никакого воздействия до тех пор, пока он не будет возвращен на нуль.
Схему, обозначенную на рисунке буквой G, называют ключевой; управляемый напряжением электронный ключ не пропускает в точку F импульсы, подаваемые на его левый вход, если напряжение на его входе D равно нулю. Если же на вход D поступает положительное напряжение, то ключ откроется для прохода импульсов и приходящие на его левый вход импульсы окажутся в точке F.
Н. — Такую схему, вероятно, очень трудно сделать.
Л. — О, нет, обычно достаточно одного диода и одного резистора, но к этому вопросу мы еще вернемся. А пока я покажу тебе, что часть схемы, расположенная после точки В и получающая отрицательные импульсы, может иметь пять различных состояний, через которые она последовательно и проходит. Первый пришедший в точку В импульс опрокинет триггер В2; потенциал левого выхода триггера В2 (коллектор его транзистора Т1) повысится и откроется ключ G…
Н. — Значит, этот первый импульс пройдет через G, и мы встретим его в точке F.
Л. — Нет. Незнайкин, ты, кажется, забыл о наличии резистора R и конденсатора С. Они несколько задержат повышение потенциала точки D. Но этого будет достаточно, чтобы вызвавший опрокидывание триггера В2 импульс пришел к еще запертому ключу G и не смог через него пройти. А вот второй поступающий в точку В импульс спокойно пройдет через ключ G.
Н. — Но ведь этот импульс вновь воздействует на триггер В2?
Л. — Он ничего ему не сможет сделать; не забывай, что импульс приходит только на один вход триггера, а когда отрицательный импульс поступит на базу запертого транзистора Т1, он не даст никакого эффекта.