Теперь обратимся к типичным областям использования УНП.
Электрические поля в сочетании с видимым заграждением
На практике вместо того, чтобы подключаться к земле как второй обкладке конденсатора, подключение производят к специально размещаемому на ограде проводу. Это как бы "вторая земля", которая позволяет, закрепив его поверху, создать электрически сбалансированное поле.
Дальнейшим усовершенствованием может быть также оснащение УНП дополнительными проводами, ограничивающими размеры поля, и, таким образом, увеличивающими его проникающую способность. Это также снижает "размазывание" зоны наблюдения. Наземное пространство, необходимое для эффективной работы системы, после всех этих усовершенствований сужается до размеров, необходимых самому компактному детектору - активному инфракрасному. Система практически перестает реагировать и на передвижения с внутренней стороны ограды.
Самостоятельные системы электрического наведенного поля
Для открытых малонаселенных пространств, где основная задача состоит в раннем обнаружении нарушителей, электрическая система наведенного поля может не подкрепляться видимой оградой. Это, конечно, повысит риск ложной тревоги. Именно поэтому система используется для предупреждения, а не для подачи тревоги.
Тем не менее, когда контролируется большой периметр зоны высокого риска, где ограничено даже разрешенное передвижение, УНП может подавать тревогу. Выбор этой системы хорош для сильно пересеченной местности, где велик риск подползания.
Защита крыш
По мере чтения этой книги у вас наверняка нарастало удивление по поводу того, что крайне мало места уделялось защите крыш. Действительно, конструкторы уделяли основное внимание пространственному обнаружению внутри зданий, а защита крыш оставалась вне поля их зрения. Для нее практически не создано аппаратуры. Тем не менее, надо помнить: пространственное обнаружение внутри здания - это последняя "линия обороны" объекта, и всегда предпочтительнее получить первый сигнал тревоги с периметра.
Выручает то, что нарушитель не может взобраться на большинство типов крыш, не задев провода. Это позволяет уменьшить чувствительность прибора и напряжение. Кроме того, на крышах в любом случае мало что может попусту встревожить сигнализацию. Птицы не в счет, так как чувствительные зоны могут быть удалены от карнизов, где и садятся потенциальные источники беспокойства. Когда птица летит, она не заземлена и мало влияет на электроемкость УНП.
Контроль за ложными тревогами
В главе 32 настойчиво рекомендуется получше заземлять электронные системы охраны и регулярно проверять заземление. Для УНП заземление жизненно необходимо. Без него объем конденсатора, созданного проводами, периодически будет переходить на объем между фазовым проводом и поверхностью земли. Заряд просто будет сбрасываться. Необходимо также местное заземление источника тока для контрольного блока.
Внутренние системы УНП достаточно устойчивы, а внешние грешат ложными тревогами главным образом из-за обилия проводов подключения и сбоев на делителях напряжения.
По-моему, наиболее эффективно работают системы, в которых повсеместно использован многожильный провод и не применялась пайка контактов, а вместо этого провода в местах соединения перевиты и герметично заизолированы. Такой контакт устойчив к разрыву, легок в изготовлении и надежен.
Так же, как и при использовании на периметре других систем, в охранной зоне следует навести порядок: подрезать ветви деревьев и бороться с ростом сорняков и кустарника. Менее очевидное, но необходимое требование - проверять изоляторы и время от времени очищать их от нагара и налетов соли и серы.
Когда вышло в свет первое издание этой книги, УНП на практике применялись мало. Теперь же накоплен опыт их производства и использования, достаточный для детального понимания причин ложных тревог и способов борьбы с ними.
Системы электрического наведенного поля для охраны внутренних помещений
Всегда найдется кто-нибудь, желающий лишить хозяина его любимой картины, сейфа, спортивного кубка или видеосистемы. Мы уже описали многие методы защиты имущества, но новые изобретения лишь помогут обвести злоумышленника вокруг пальца. Нельзя сказать, что УНП - большая новинка, но технология, повышающая их надежность, разработана лишь недавно. Фирма "Tunstall Security Ltd" создала, использовав принцип петли фиксации фазы, систему, не реагирующую на медленное изменение среды, но срабатывающую, если из ее поля вынуть охраняемый объект, резко снижая емкость контура. Такая система сигнализации незаменима в присутственные часы в многолюдных учреждениях типа музеев, картинных галерей и т.д. Там бессильны ПИК детекторы, ультразвуковые и микроволновые сенсоры.
Детекторы магнитного поля
В качестве примера рассмотрим систему "Stellar Н". Она состоит из скрытых под поверхностью кабелей, испускающих в пространство радиочастоты и воспринимающих отраженную от проходящего над ними нарушителя энергию.
Принцип действия
Если зарытый кабель излучает радиоволны, то они расходятся от него по всем направлениям - в землю и в воздух. Если рядом закопать такой же неэкранированный кабель, он получит свою часть радиоволн. Теперь, вспомнив главы 16 и 20, вы наверняка уже догадались, что произошло. Проходящий поверху нарушитель отражает часть радиоизлучениия на второй кабель. Эхо, как и в случае радиозатухания, сдвинется по фазе относительно прямого сигнала. Электронная система на центральном пульте "почувствует" сдвиг и даст сигнал тревоги.
Применение системы в наружной охране
Как правило, кабели закладываются на глубину нескольких сантиметров параллельно друг другу по периметру ограды. Зона наблюдения в результате имеет ширину около 2 метров. Если позволяет ситуация, размеры зоны могут быть удвоены за счет дополнительного приемного кабеля в метре от становящегося центральным излучающего провода.
В отличие от приборов наведенного электрического поля магнитные детекторы, наоборот, стремятся работать на фазовом сдвиге затухания. Длина волны для получения четкого эха должна быть короче. Частота сдвигается в МКВ диапазон, но не слишком далеко, иначе земля поглотит слишком много энергии и разорвет прямую связь между передающим и принимающим кабелем.
Контроль за ложными тревогами
Хотя принцип фазового сдвига и определяет работу магнитных сенсоров. Они не имеют типичных "болезней" ультразвуковых детекторов "стоячей волны".
Во-первых, на радио и электромагнитное излучение не влияют движения воздуха (о распространении акустической энергии в атмосфере см. главу 15).
Во-вторых, длина кабеля (более 100 метров) относительно расстояния между ними столь велика, что маловероятно возникновение ложного рисунка "стоячей волны" с глубоким затуханием (см. главу 20).
Однако следует помнить, что нарушитель проходит над относительно малым участком длины кабелей и не способен вызвать сильного эха сдвига частот. Поэтому обычно магнитные системы наведенного поля настраиваются, чтобы обеспечить приемлемый баланс уверенного обнаружения и процента ложных тревог. Некоторую помощь в этом оказывают электронные фильтрующие устройства, способные определить характеристики движения и расчеты возможного времени пребывания нарушителей в зоне в сравнении с другими источниками ложных тревог.
Неожиданные перемены погоды, например, дожди, создают большие проблемы. Они меняют отражающий характер границы "земля-воздух" подобно зеркалам. Поэтому приходится закладывать кабель на глубину в 5-10 см. Это настолько снижает сдвиг по фазе между прямым сигналом и эхом, полученным от мокрой почвы, что не вызывает сигнала ложной тревоги.
Темы к обсуждению
Нетрудно найти систему защиты периметра для ровной поверхности. А вот к сильно пересеченной местности и сложному контуру зоны подобрать способ обнаружения нарушителя трудно. Приборы, подобные электретному кабелю (глава 18) слишком связаны с видимой оградой и не могут работать вне ее, не становясь источниками постоянных ложных тревог. С другой стороны, системы электрических УНП могут быть проложены на обратной стороне ограды, настроены на проникновение, не далее внешней видимой стенки и могут следовать всем изгибам ландшафта.