Выбрать главу

Вызывает интерес и то обстоятельство, что компьютеры создают возможности для интеграции микросистем с техническими макро- и мегасистемами . С помощью компьютеров создаются, например, сети разного рода, а на этой основе формируется универсальная коммуникационная система, имеющая глобальный характер. Хотя отдельные узлы этой сети могут функционировать в автономном режиме, но переход к универсальной коммуникации в принципе меняет мир, в который погружена деятельность современного человечества. Сегодня растет информационный вал, увеличивается мощь информационной стихии, и вместе с тем зреют условия для синергетической упорядоченности такой стихии, для новой технической организации интегрирующегося человечества.

Технические системы - это явление новейшего времени. Их создание потребовало переориентации в принципах организации технической деятельности. К числу новых принципов относятся: концентрированность действий, комплексность, выделение основного звена, поэтапность развития, технологическая гибкость и мобильность /11/.

Чтобы использовать названные пришиты в реальной деятельности, необходимо эксплицировать их содержание. Обобщая практику и методологические подходы к созданию технических систем, правомерно говорить о том, что принцип концектрированности действий предполагает максимальную направленность всех частных функций системы на достижение главной цели ее создания. Современные разработчики систем справедливо полагают, что система по своей сущности есть объект, порождаемый противоречиями и являющийся средством их разрешения. Механизм разрешения противоречий состоит в направленности структурных и динамических характеристик на достижение главной цели функционирования системы. На это настраивается вся ее организация. Хорошая организация отличается от плохой более высокой сфокусированностью свойств и действий системы на разрешение ее актуальных противоречий. Сегодня чаще всего реализация принципа концентрированности действия при создании новой техники связывается с высокой экономической эффективностью создаваемых машин и технических комплексов. Экономическая эффективность, в свою очередь, требует создания целостных, функционально завершенных технико-технологических комплексов, нацеленных на полное обеспечение широких производственно-экономических функций. Соответствующие комплексы возникают как взаимоувязанные цепочки машин, оборудования, приборов, информационного обеспечения, которые охватывают весь производственный цикл от сырья до конечного продукта, включая вспомогательные и обслуживающие производства. Часто подобного рода комплексы называют технолого-экономическими системами. К ним относятся, например, гибкие автоматизированные комплексы в машиностроении, включающие в себя вычислительные центры, транспортные средства, устройства диагностики, измерения и корректировки режимов резания, автоматические системы смены инструмента и т.п. Антиподами целостных технолого-экономических систем являются производства, в которых машинные операции прерываются ручными, отдельные агрегаты не согласуются по техническим принципам, производительности и надежности; технологии, в которых вспомогательные и обслуживающие операции в отличие от основных технически слабо обеспечены.

Требование полноты и целостности систем лежит в основе комплекса прикладных методов функционально-стоимостного анализа (ФСА), являющихся инструментом исследования технических систем с точки зрения полноты и точности сосредоточения функций, ликвидации дисфункциональных эффектов и нефункциональной избыточности. Применение методов ФСА на практике способно давать огромную экономию средств и ресурсов, оно направляет инженерную деятельность к существенному повышению качества и конкурентоспособности большой технической системы.

В современной инженерной деятельности применяется альтернативный анализ возможных конструктивных схем; при этом отыскивается вариант с максимальным удельным весом активных элементов и операций, непосредственно обеспечивающих основные функции системы, и минимумом вспомогательных, холостых, промежуточных элементов и процессов. К примеру, совмещение ранее разрозненных технологических и транспортных операций лежит в основе действия целого спектра прогрессивных технико-технологических комплексов: роторных машин и роторно-конвейерных линий, металлургических комплексов непрерывной разливки стали и т.п. Показательно, что использование роторных машин и комплексов за счет совмещения операций и преодоления разрывов технологического процесса резко сократило длительность производственных циклов, высвободило большое число обычных машин и в конечном счете повысило эффективность массового производства в 5-7 раз. К тому же подобные машины и комплексы очень компактны. Рассматриваемое требование реализуется также в принятии технических решений с учетом качественного своеобразия условий эксплуатации и специфических запросов потребителей. Хорошо известно, что функциональность свойств системы определяется не только их соответствием цели, но и конкретными условиями среды. Поэтому адекватный учет последних необходим для создания высоко-функциональной эффективной техники, для ее успешного внедрения в конкретное производство. И наоборот, невнимание к специфическим условиям использования технических систем - типичная причина снижения их эффективности, уменьшения надежности, отторжения их производством.