Выбрать главу

Исчерпывающие молекулярные исследования ныне живущих млекопитающих ясно указывают на то, что летучие мыши являются самыми близкими родственниками копытных, вроде коров и лошадей, и вместе с ними образуют одну группу с хищными млекопитающими, такими, как собаки и кошки{11}. Вопрос о родственных связях летучих мышей с современными млекопитающими, таким образом, решён, но вопрос о происхождении уникальнейшего морфологического новшества летучих мышей, активного полёта, всё ещё остаётся без ответа.

Приблизительно через десять миллионов лет после того, как вымерли динозавры, не относящиеся к птицам, адаптивная радиация существующих в наше время групп млекопитающих становится хорошо документированной ископаемыми остатками. Многие эоценовые окаменелости замечательно полны и вне всяких сомнений классифицируются среди самых ранних летучих мышей. У них уже имеются крылья, и, несмотря на крупномасштабные поиски в богатых отложениях хорошо сохранившихся окаменелостей, неизвестно никаких промежуточных звеньев. Возможно, это эволюционное новшество возникло очень быстро. Биология развития даёт подсказки в отношении механизмов, которые, вероятно, сделали это возможным.

Передние конечности, на раннем этапе развития почки конечности относительно более крупные по сравнению с задними — это довольно обычная картина для млекопитающих. Так происходит в период индивидуального развития, который некоторые коллеги называют филотипическим и который характеризуется некоторой морфологической и, возможно, генетической общностью для различных таксонов. От этой в чём-то сходной стартовой точки пути развития летучих мышей и других млекопитающих начинают расходиться. Это было детально документировано для некоторых видов летучих мышей и для обычных мышей. У летучих мышей увеличение размеров пальцев на передней конечности происходит быстрее, чем пальцев на задней конечности — это пример аллометрического роста для конечностей. У обычных мышей и передние, и задние лапы растут со сходной скоростью. Удлинение пальцев летучей мыши в ходе развития достигается благодаря ускоренному темпу разрастания и дифференциации клеток хряща. Карен Сирс и её коллеги обнаружили, что этот процесс связан с более высоким содержанием костного морфогенетического белка (bone morphogenetic protein)

Bmp2. Другая работа сравнительного характера показала также, какие молекулы задействованы в сохранении кожи между пальцами в ходе индивидуального развития, что приводит к образованию крыла у взрослой особи. На стадии раннего эмбриона у нас есть кожа между пальцами, как у всех позвоночных с руками и ногами. В некоторый момент времени клетки, образующие эту кожу, начинают отмирать, и поэтому у нас есть наши подвижные пальцы, а не весло или крыло, как лапы уток или крылья летучих мышей. На лапах утки и в передней конечности летучей мыши кожа не отмирает, а сохраняется и даже разрастается. Механизмы, задействованные в этих двух случаях, аналогичны, но, как открыли Скоттом Ветерби и его коллеги, участвующие в них молекулы не одинаковы. Было известно, что у цыплят и мышей, модельных организмов для исследований в области генетики развития, костные морфогенетические белки (Bmp), которые способны стимулировать рост и дифференциацию клеток, запускают процесс гибели клеток в недифференцированной, свободной соединительной ткани (мезенхиме) между развивающимися пальцами «весла» передней и задней конечностей, характерного для эмбрионального состояния. В ноге утки молекула Gremlin служит ингибитором этого действия Bmp, и её работа приводит к образованию перепончатой лапы. Летучая мышь также обладает этим механизмом, но в нём дополнительно участвует другой белок, а именно, фактор роста фибробластов Fgf8, также играющий роль в различных аспектах морфогенеза.