Асенковы
Асенковы — семейство известных актрис, из которых наиболее выдающейся была Варвара Николаевна. Ее мать Александра Егоровна, род. 1796 г., воспитывалась в театральном училище, уч. кн. А.А. Шаховского; дебютировала в 1814 г. у императрицы Марии Фёдоровны в одноактной комедии «Марфа и Угар» (роль Марфы) и имела успех. По свидетельству современников, А.Е. была пленительна, играла кокеток и служанок в высокой комедии, а также роли старых дев, сварливых старух и бойких барынь в комедии и водевиле; особенно была неподражаема в ролях субреток (Дорина в «Тартюфе», Сусанна в «Свадьбе Фигаро»), умерла в 1860-х годах.
Ее дочь, Варвара Николаевна, служила украшением драматической сцены в период высшего расцвета отечественного сценического искусства, период, когда впервые были поставлены «Ревизор» и «Жизнь за царя». В.Н. род. 1 апреля 1817 года; мать отдала ее в театральное училище, откуда она была, как и из пансиона, исключена за неспособность. Избрать для дочери другую карьеру было невозможно и Александра Егоровна обратилась к известному артисту И.И. Сосницкому, умоляя его взять дочь для приготовления к сцене. Дебютировала В.Н. в бенефисе Сосницкого 25-го января 1835 в старинной комедии Фавара: «Солиман II или три султанши», в роли бойкой Роксаны — одалиски, пленившей султана. В.Н. пленила зрителей; ее красота, ловкость, прекрасная мимика, изящные манеры, приятный голос — все в ней восторгало своей необычайностью. Исполняя первые и трудные роли любовниц в драмах, комедиях и водевилях, она постоянно была любимицею публики. В.Н. нравились роли мальчиков и с переодеванием (roles de travestissement), в которых она была удивительно ловка и мила своей игривостью. Играя очень часто, любя веселье, праздники, удовольствия всякого рода, молодая актриса не берегла себя. Слабое здоровье В.Н. не выдержало сценических трудов, оваций и поклонников и после 6-ти лет сценической деятельности (умерла 15 апреля 1841 г.), преждевременно сошла в могилу, не устояв против сильной чахотки. Похоронена на Смоленском кладбище, близ церкви; на могиле ее сооружен по подписке красивый памятник.
Асимптота
Асимптота (от греч. слов: a, sun, piptw) — несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между общими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к её оси. Эти прямые, о которых упоминает уже Архимед, были еще в древности названы А. и сохранили свое название и по настоящее время. Впоследствии Ньютон показал, что существуют криволинейные А. не только в кривых трансцендентных, но даже в алгебраических, начиная с 3 порядка последних. Действительно, ныне различают А. прямолинейные и криволинейные; но, обыкновенно, прямолинейной А. присваивают название Асимп., называя криволинейную — асимптотической кривой. Основываясь на вышеприведенном определении, что прямолинейная А. есть касательная к кривой в точке, бесконечно удаленной от начала координат, легко найти уравнение А. данной кривой. В самом деле, пусть y=f(x) есть уравнение кривой линии; уравнение касательной ее в точке, определенной координатами х и у, будет, как известно, или .
Чтобы перейти от касательной к А., стоит сделать одно из следующих предположений: 1) х и у =+? , 2) x=+?, а у=конечному числу и 3) у= +?, а х=конечному числу, так как этими предположениями мы выражаем, что точка касания находится на бесконечном расстоянии от начала координат. Так, для гиперболы, определяемой уравнением , находим Полагая х =?, найдем ; следовательно уравнение А. рассматриваемой гиперболы будет или, что все равно, ; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет Y А. =Х+В уравнение А., непараллельной оси у. Ордината у кривой, соответствующая абсциссе х, для весьма больших величин сей абсциссы, будет очень мало разниться от ординаты Y а-ты; так что можно ее принять у=Ах+В+e , подразумевая под e количество, уничтожающееся вместе с I/x. Итак, полагая х=? , найдем , и пред. (у — Ах)= пред. (В+e)=В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить или y=xq и найти предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у — Ах = n, или y = Ax + n. Изменив х на у и наоборот, и рассуждая также, как и выше, найдем А., непараллельные оси х. Так, например, уравнение рассмотренной нами гиперболы, через подстановку qx вместо у, дает или полагая х =?, найдём , или Полагая в том же уравнении получим или , где, полагая х=?, получим n=0=B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, , что и требовалось доказать. бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др.
Пример асимптотической кривой усматриваем в кривой 3-го порядка, определяемой уравнением y=х2 + I/х. Очевидно, что по мере увеличения абсциссы х в положительную или отрицательную сторону, член I/x будет неопределенно уменьшаться, а х2 увеличиваться, так что ордината у будет приближаться все более и более к значению х2, которого однако никогда не достигает. Отсюда ясно, что рассматриваемая нами кривая имеет А-ской кривой параболу, определяемую уравнением у=х2 Для весьма малых положительных или отрицательных значений абсциссы х случится обратное положение: численная величина дроби I/x неопределённо возрастает, а х2 напротив того, уменьшается, так что ордината у будет стремиться к равенству с I/x ; таким образом, равностороння гипербола, отнесенная в своим асимптотам, будет также А-ою предложенной кривой.
Асимптота поверхности
Асимптота поверхности называется прямая линия, пересекающая поверхность по крайней мере в двух бесконечно удаленных точках.
Асимптотическая плоскость
Асимптотическая плоскость — плоскость, касающаяся данной поверхности в бесконечно удаленной точке, но не лежащая вся в бесконечности.
Асимптотическая поверхность
Асимптотическая поверхность — поверхность, обертывающая асимптотические плоскости к некоторой поверхности. Всякая поверхность имеет, вообще говоря, бесконечно. большое число бесконечно удаленных точек, а именно все точки пересечения ее с бесконечно удаленною плоскостью, совокупность которых составляет бесконечно-удаленную кривую, лежащую на данной поверхности. Всякой точке этой кривой соответствует одна А., так что поверхность имеет бесконечное число А., вещественных или мнимых. Так как в тоже время во всякой точке можно провести к поверхности касательную плоскость, то поверхность имеет и бесконечное число асимптотических плоскостей, вещественных или мнимых. Всякая такая плоскость заключает в себе бесконечное число А., а так как все эти А. пересекают поверхность в одной и той же бесконечно удаленной точке, то они между собой параллельны. А.-ческая поверхность очевидно линейчатая поверхность. Пусть уравнение данной поверхности есть F(x, у, z)=0 и пусть х — n/l = у — h/m = z — z/n есть уравнение одной из А. Расположим F по однородным функциям n-го, n-1-го и т.д. измерений: F=jn + jn-1 +...+ j1 + j0 Точки пересечения А. и поверхности суть корни уравнения F(x+lr, h+mr, z+nr)= 0. Назовем через D операцию тогда будет, если jn , jn-1 ... означают функции от l,m,n rnjn+ rn-1j1-n (Djn + jn-1) +(1/2)rn-2D2jn (Djn-1 +jn-2)+...=0
Простая A. получится, если два корня этого уравнения обратятся в бесконечность, т. е. если jn = 0 и Djn +jn-1 =0. Уравнения эти показывают, что все асимптоты параллельны производящей конической поверхности jn(х, у, z)=0 и что все А. параллельные одной из производящих этого конуса лежать в одной плоскости параллельной плоскости касательной в конусу с соответствующей производящей.