была опубликована не им, а итальянским же ученым Дж. Кардано (1501-1576), который узнал ее от Тартальи. В это же время Л. Феррари (1522-1565), ученик Кардано, нашел решение уравнения 4-й степени.
Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.
Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII – начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К.Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения xn - 1 = 0, к которому сводится задача о построении с помощью циркуля и линейки правильного n-угольника. В частности, невозможно с помощью этих инструментов построить правильный семиугольник, девятиугольник и т.д. – такое построение возможно лишь в случае, когда n - простое число вида или произведение различных простых чисел такого вида.
Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д'Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д'Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен n-й степени от x разлагается в произведение n линейных множителей.
В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.
АЛГОРИТМ
Алгоритм - точное предписание, определяющее процесс перехода от исходных данных к искомому результату.
Предписание считается алгоритмом, если оно обладает тремя следующими свойствами:
определенностью, т.е. общепонятностью и точностью, не оставляющими место произволу;
массовостью, т.е. возможностью исходить из меняющихся в известных пределах значений исходных данных;
результативностью, т.е. направленностью на получение искомого результата.
Перечисленных свойств вполне достаточно, чтобы можно было определить, является данное конкретное предписание алгоритмом или нет.
Совершенно очевидно, что хорошо известное предписание: «Пойди туда, не знаю куда, принеси то, не знаю что» - алгоритмом не является.
Примерами алгоритмов нематематического характера могут служить различные рецепты из поваренной книги. Рассмотрим алгоритм приготовления бутерброда.
Исходные данные: хлеб (белый, черный), продукт (колбаса, ветчина, сыр, масло).
Искомый результат: бутерброд (ломтик продукта, наложенный на ломтик хлеба).
Предписание:
а) отрезать ломтик продукта;
б) отрезать ломтик хлеба;
Можно легко убедиться, что это предписание обладает всеми тремя свойствами алгоритма:
определенностью (всем понятно, что значит отрезать ломтик, положить один ломтик на другой и как все это сделать);
массовостью (хлеб может быть черным или белым, продукт – колбасой, ветчиной, сыром, маслом);
результативностью (при выполнении предписания получается искомый результат - бутерброд).
При этом последовательность выполнения пунктов а) и б) не существенна. Бутерброды получаются одинаковыми в обоих случаях а) - б) - в) и б) - а) - в). Это объясняется тем, что пункты а) и б) взаимно независимы друг от друга. Пункт в) может быть выполнен только после выполнения и пункта а), и пункта б), т.е. пункт в) зависит и от а), и от б).
Если пункты предписания изображать в виде прямоугольников, а зависимости – стрелочками, направленными в сторону зависимости, то алгоритму приготовления бутерброда будет соответствовать изображенная схема. (Интересно, что если в наличии имеются два ножа и соответствующее количество рук, то пункты а) и б) можно выполнять не только в любой последовательности, но и одновременно, и время приготовления бутерброда существенно уменьшится.)