2/73 = 1/60 + 1/219 + 1/292 + 1/365.
Накопленные в странах Древнего Востока сокровища математических знаний были развиты и продолжены учеными Древней Греции. Много имен ученых, занимавшихся арифметикой в античном мире, сохранила нам история - Анаксагор и Зенон, Евклид (см. Евклид и его «Начала»), Архимед, Эратосфен и Диофант. Яркой звездой сверкает здесь имя Пифагора (VI в. до н.э.). Пифагорейцы (ученики и последователи Пифагора) преклонялись перед числами, считая, что в них заключена вся гармония мира. Отдельным числам и парам чисел приписывались особые свойства. В большом почете были числа 7 и 36, тогда же было обращено внимание на так называемые совершенные числа, дружественные числа и т. п.
В средние века развитие арифметики также связано с Востоком: Индией, странами арабского мира и Средней Азии. От индийцев пришли к нам цифры, которыми мы пользуемся, нуль и позиционная система счисления; от аль-Каши (XV в.), работавшего в Самаркандской обсерватории Улугбека, - десятичные дроби.
Благодаря развитию торговли и влиянию восточной культуры начиная с XIII в. повышается интерес к арифметике и в Европе. Следует вспомнить имя итальянского ученого Леонардо Пизанского (Фибоначчи), сочинение которого «Книга абака» знакомило европейцев с основными достижениями математики Востока и явилось началом многих исследований в арифметике и алгебре.
Вместе с изобретением книгопечатания (середина XV в.) появились первые печатные математические книги. Первая печатная книга по арифметике была издана в Италии в 1478 г. В «Полной арифметике» немецкого математика М. Штифеля (начало XVI в.) уже есть отрицательные числа и даже идея логарифмирования.
Примерно с XVI в. развитие чисто арифметических вопросов влилось в русло алгебры – в качестве значительной вехи можно отметить появление работ ученого из Франции Ф. Виета, в которых числа обозначены буквами. Начиная с этого времени основные арифметические правила осознаются уже окончательно с позиций алгебры.
Основной объект арифметики – число. Натуральные числа, т.е. числа 1, 2, 3, 4, ... и т.д., возникли из счета конкретных предметов. Прошло много тысячелетий, прежде чем человек усвоил, что два фазана, две руки, два человека и т.д. можно назвать одним и тем же словом «два». Важная задача арифметики – научиться преодолевать конкретный смысл названий считаемых предметов, отвлекаться от их формы, размера, цвета и т. п. Уже у Фибоначчи есть задача: «Семь старух идут в Рим. У каждой по 7 мулов, каждый мул несет по 7 мешков, в каждом мешке по 7 хлебов, в каждом хлебе по 7 ножей, каждый нож в 7 ножнах. Сколько всех?» Для решения задачи придется складывать вместе и старух, и мулов, и мешки, и хлеба.
Развитие понятия числа – появление нуля и отрицательных чисел, обыкновенных и десятичных дробей, способы записи чисел (цифры, обозначения, системы счисления) – все это имеет богатую и интересную историю.
«Под наукой чисел понимаются две науки: практическая и теоретическая. Практическая изучает числа постольку, поскольку речь идет о числах считаемых. Эту науку применяют в рыночных и гражданских делах. Теоретическая наука чисел изучает числа в абсолютном смысле, отвлеченные разумом от тел и всего, что поддается в них счету». аль-Фараби
В арифметике числа складывают, вычитают, умножают и делят. Искусство быстро и безошибочно производить эти действия над любыми числами долгое время считалось важнейшей задачей арифметики. Сейчас в уме или на листке бумаги мы делаем лишь самые простые вычисления, все чаще и чаще поручая более сложную вычислительную работу микрокалькуляторам, которые постепенно приходят на смену таким устройствам, как счеты, арифмометр (см. Вычислительная техника), логарифмическая линейка. Однако в основе работы всех вычислительных машин - простых и сложных – лежит самая простая операция – сложение натуральных чисел. Оказывается, самые сложные расчеты можно свести к сложению, только делать эту операцию надо многие миллионы раз. Но здесь мы вторгаемся в другую область математики, которая берет начало в арифметике, - вычислительную математику.
Арифметические действия над числами имеют самые различные свойства. Эти свойства можно описать словами, например: «От перемены мест слагаемых сумма не меняется», можно записать буквами: a + b = b + a, можно выразить специальными терминами.
Например, указанное свойство сложения называют переместительным или коммутативным законом. Мы применяем законы арифметики часто по привычке, не осознавая этого. Часто ученики в школе спрашивают: «Зачем учить все эти переместительные и сочетательные законы, ведь и так ясно, как складывать и умножать числа?» В XIX в. математика сделала важный шаг – она стала систематически складывать и умножать не только числа, но также векторы, функции, перемещения, таблицы чисел, матрицы и многое другое и даже просто буквы, символы, не очень заботясь об их конкретном смысле. И вот здесь оказалось, что самым важным является то, каким законам подчиняются эти операции. Изучение операций, заданных над произвольными объектами (не обязательно над числами), - это уже область алгебры, хотя эта задача основана на арифметике и ее законах.