где A = π - B - C.
Центральное место в геометрии треугольника занимают свойства так называемых замечательных точек и линий, простейшие из которых мы и рассмотрим. Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке - центре описанной около треугольника окружности (рис. 2). Этот факт следует из свойства серединного перпендикуляра d к отрезку: d состоит из тех, и только тех, точек, которые равноудалены от концов отрезка. Если для треугольника ABC серединные перпендикуляры к AB и BC пересекаются в точке O, то |OA| = |OB| и |OB| = |OC|, поэтому |OA| = |OC| и точка O обязана лежать на серединном перпендикуляре к третьей стороне AC.
Рис. 2
Биссектрисы трех внутренних углов треугольника пересекаются в одной точке - центре вписанной в треугольник окружности (рис. 3). Это следует из основного свойства биссектрисы l выпуклого угла: l состоит из тех, и только тех, точек угла, которые равноудалены от его сторон. Если рассмотреть дополнительно биссектрисы трех пар внешних углов треугольника, то получается еще три замечательные точки - центры вневписанных окружностей (рис. 4).
Рис. 3
Рис. 4
Радиусы описанной, вписанной и вневписанной окружностей R, r, ra, rb и rc связаны красивым соотношением
ra + rb + rc = r +4R
а расстояние между центрами вписанной и описанной окружностей ρ можно найти по формуле Эйлера:
ρ2 = R2 -2Rr.
Здесь же приведем формулы для площади треугольника:
S = (abc)/4R = pr,
где p - полупериметр треугольника.
Среди свойств биссектрис треугольника выделяется такая теорема: биссектриса внутреннего (внешнего) угла C треугольника ABC делит противоположную сторону внутренним (внешним) образом в отношении, равном отношению прилежащих сторон; на рис. 5
AE:BE=AE':BE'=AC:BC.
Рис. 5
Все три медианы пересекаются в точке M (рис. 6), называемой центроидом треугольника ABC (который также является центром масс для тонкой треугольной пластины). Каждая медиана делится точкой M в отношении 2:1, считая от соответствующей вершины треугольника. Высоты треугольника (или их продолжения) также пересекаются в одной точке H - ортоцентре треугольника (рис. 7).
Рис. 6
Рис. 7
Пусть высоты треугольника ABC пересекают соответственные стороны (или их продолжения) в точках A0, B0, C0 (рис. 7). Треугольник A0B0C0 называется ортоцентрическим для треугольника ABC или, коротко, его ортотреугольником. Оказывается, высоты треугольника являются биссектрисами его ортотреугольника. Если треугольник ABC остроугольный, то ортотреугольник A0B0C0 вписан в треугольник ABC: вершины A0B0C0 лежат на соответствующих сторонах треугольника ABC. Справедлива замечательная теорема: среди всех треугольников, вписанных в остроугольный треугольник, ортотреугольник имеет наименьший периметр.
Теоремы о пересечении высот, медиан, биссектрис треугольника в действительности можно получить из общей «теоремы Чевы» (Д. Чева - итальянский математик, (1648-1734)): отрезки AQ, BR, CP, соединяющие вершины треугольника ABC с точками на противолежащих сторонах (рис. 8), пересекаются в одной точке D тогда, и только тогда, когда
AP·BQ·CR = PB·QC·RA.
Рис. 8
ЗАДАЧА НАПОЛЕОНА
Французский император Наполеон Бонапарт был любителем математики. Он находил время заниматься ею для собственного удовольствия, чувствовал в ней красоту и объект, достойный приложения остроумия и изобретательности. Одно из свидетельств тому - несколько составленных им геометрических задач.
Вот как можно сформулировать одну из них:
На сторонах произвольного треугольника ABC внешним образом построены как на основаниях равносторонние треугольники (рис. 1). Доказать, что центры этих треугольников также являются вершинами равностороннего треугольника.
Задача имеет довольно изящное решение. Пусть O1, O2 и O3 центры равносторонних треугольников. Выполним дополнительное построение: соединим отрезками прямых точки O1, O2 и O3 с ближайшими (к каждой из них) двумя вершинами треугольника ABC и между собой.
Рис. 1
По свойствам равностороннего (правильного) треугольника AO1 = O1B, BO2 = O2C, CO3 = O3A, ∠AO1B = ∠BO2C = ∠CO3A = 120°и ∠O1AO3 + ∠O1BO2 + ∠O2CO3 = 360°. Выделим шестиугольник AO1BO2CO3, а внешние к нему невыпуклыс четырехугольники отбросим. Получим фигуру, изображенную на рис. 2.