Выбрать главу

,

легко заметить, что

,

поэтому существует такой угол φ, что

; .

Следовательно,

,

и мы получили простейшее уравнение относительно y = x - φ.

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Тригонометрические функции возникли в Древней Греции в связи с исследованиями в астрономии и геометрии. Отношения сторон в прямоугольном треугольнике, которые по существу и есть тригонометрические функции, встречаются уже в III в. до н.э. в работах Евклида, Архимеда, Аполлония Пергского и других. Современную форму теории тригонометрических функций и вообще тригонометрии придал Л. Эйлер. Ему принадлежат определения тригонометрических функций и принятая в наши дни символика.

Тригонометрические функции (от греческих слов trigonon - «треугольник» и metreo - «измеряю») - один из важнейших классов функций.

Чтобы определить тригонометрические функции, рассмотрим тригонометрический круг (окружность) с радиусом 1 и центром в начале координат (рис. 1). Если φ - угол между радиусами OC и OA, выраженный в радианах, 0 ≤ φ ≤ 2π (угол отсчитывается в направлении от OC к OA), то координаты точки A называются соответственно косинусом и синусом угла φ и обозначаются как x=cosφ и x=sinφ. Отсюда ясно, что |cos φ| ≤1, |sin φ| ≤1 и cos2 φ + sin2 φ=1.

Рис. 1

Для острых углов (0< φ <π/2) тригонометрические функции cos φ и sin φ можно рассматривать как отношения катета прямоугольного треугольника (прилежащего к углу и противолежащего углу соответственно) к гипотенузе (рис. 2), длина которой уже не обязательно равна единице. Исходя из этого определения, составим таблицу для значений тригонометрических функций некоторых углов; кроме того, ясно, что

cos 0 = sin π/2 = 1 и cos π/2= sin 0 = 0

Рис. 2

φ

π/6

π/4

π/3

sin φ

1/2

cos φ

1/2

Чтобы построить графики тригонометрических функций при 0 ≤ φ ≤ 2π, поступим следующим образом. Разделим тригонометрическую окружность на 16 равных частей и рядом разместим систему координат, как показано на рис. 3, где отрезок длиной 2π на оси  также разделен на 16 равных частей. Проводя прямые линии параллельно оси  через точки деления окружности, мы на пересечении этих прямых с перпендикулярами, восставленными из соответствующих точек деления отрезка [0,2π] на оси , получаем точки, координаты которых равны синусам соответствующих углов (рис. 3); отметим, что имеют место следующие приближенные равенства :

sin π/8 ≈ 0,4, sin π/4 ≈ 0,7,  sin 3π/8 ≈ 0,9.

Рис. 3

Если взять, скажем, не 16, а 32, 64 и т.д. точек, то можно построить сколь угодно много точек, лежащих на графике функции x=sinφ. Проводя через них плавную кривую, мы получим достаточно удовлетворительный график функции x=sinφ на отрезке [0,2π]. Для того, чтобы получить функцию x=sinφ, определенную на всей числовой прямой, сначала определяют ее на всех отрезках вида , n ≥ 1 - целое, т.е. полагая, что ее значения в точках  равны (0≤φ≤2π), а затем для отрицательных φ используют равенство sin(-φ) = -sinφ. Проделав все это, мы получим график, показанный на рис. 4. В итоге получается периодическая (с периодами 2πn, n - целое и n≠0), нечетная функция x=sinφ, которая определена при всех действительных значениях φ; ее область значений [-1,1].

Рис. 4

При определении функции y = cosφ (для всех φ) заметим сначала, что cosφ = sin(π/2-φ) для 0≤φ≤π/2, которое следует непосредственно из определения тригонометрических функций sin φ и cos φ. Так как функция x=sinφ уже нами определена при всех φ, мы положим по определению, что это равенство и задает функцию y = cosφ при всех φ. Из этого определения нетрудно получить и график функции y = cosφ, которая, очевидно, будет четной и периодической, так как ее график получается из графика функции x=sinφ путем параллельного переноса влево на отрезок длиной π/2, как единого целого графика функции x=sinφ (рис. 5).