Выбрать главу

МИХАИЛ АЛЕКСЕЕВИЧ ЛАВРЕНТЬЕВ

(1900-1980)

М. А. Лаврентьев - советский ученый и организатор науки, Герой Социалистического Труда (1967), лауреат Ленинской (1958) и Государственных (1946, 1949) премий, академик (1946), вице-президент Академии наук СССР (1957-1975).

М. А. Лаврентьев родился в Казани, в семье учителя математики Казанского технического училища. В 1918 г. он поступил в Казанский университет, на последнем курсе перевелся в Московский университет и тогда, еще студентом, начал свою педагогическую деятельность в Московском Высшем техническом училище им. Н.Э. Баумана и в МГУ.

Как математик М. А. Лаврентьев сформировался в научной школе русского математика Н. Н. Лузина, из которой вышли такие известные советские ученые, как П. С. Александров, А. Н. Колмогоров и другие. М. А. Лаврентьев вспоминал, что «это была особая школа - школа обмена идеями, проблемами, путями поиска их решений, школа творчества, которая связывает людей общими интересами и методами исследований».

М. А. Лаврентьеву принадлежат основополагающие работы по математическому анализу, теории дифференциальных уравнений и современной теории функций, он создал несколько новых теорий в механике непрерывных сред и газовой динамике.

Когда в конце 50-х гг. Коммунистическая партия и Советское правительство поставили задачу скорейшего развития Сибири и Дальнего Востока, М. А. Лаврентьев возглавил уникальный эксперимент по созданию крупнейшего комплексного научного центра - Сибирского отделения Академии наук СССР. Когда он приехал в Новосибирск, на месте будущего Академгородка на берегу Новосибирского водохранилища стояло лишь несколько бараков. Его талант организатора, огромная зажигающая энергия и научный авторитет в значительной степени обеспечили успех этого эксперимента. Ныне в Академгородке около 50 научно-исследовательских учреждений.

Кузницей молодых научных кадров Сибирского отделения АН СССР стал созданный М. А. Лаврентьевым в 1959 г. Новосибирский государственный университет, в котором преподают ведущие ученые Сибирского отделения и обучение проводится так, что уже студенты II-III курсов начинают заниматься научной работой. По инициативе М. А. Лаврентьева в Академгородке организована физико-математическая школа-интернат, куда принимают наиболее талантливых ребят, победителей всесибирских олимпиад школьников. При своей огромной занятости Михаил Алексеевич всегда находил время для учеников школы-интерната, вникал в их дела и заботы, беседовал с ними. Он неоднократно говорил, что ученому необходимы трудолюбие, энтузиазм, оптимизм, но главное - это требовательность к себе и абсолютная честность. Он считал, что ребятам для развития творческого мышления полезно задавать нестандартные задачи, особенно практического содержания.

Многие теоретические исследования ученого были направлены на решение проблем народного хозяйства.

М. А. Лаврентьев - создатель теории направленного взрыва. И на основе математических расчетов ученого направленным взрывом была создана плотина, которая спасла столицу Казахстана Алма-Ату от разрушительных грязевых потоков-селей.

------------------------------------------

Таким образом, то, что раньше выглядело как функция t = T(p) одного аргумента p, при переходе к числовой записи может оказаться функцией нескольких числовых аргументов. Такие функции встречаются очень часто. Так, прямоугольный параллелепипед  вполне определяется тройкой чисел (x,y,z) - длинами его ребер, поэтому объем Vn параллелепипеда оказывается функцией f(x,y,z) трех числовых переменных x,y,z. Хорошо известно, что Vn = f(x,y,z) = x·y·z.

Задание функции, как правило, предполагает указание алгоритма или, по крайней мере, точное описание того, как по фиксированному значению аргумента находить значение функции. Алгоритмическое задание функции является основным для расчетов, выполняемых на электронных вычислительных машинах. В случае числовых функций весьма распространено аналитическое задание функций в виде некоторых математических формул типа V = x·y·z, заменяющих словесные описания. В экспериментальных исследованиях, когда какая-то величина измеряется при некотором фиксированном наборе значений параметров, от которых она зависит, возникают таблицы значений функции, которые по найденным значениям функции в отдельных точках позволяют с должной точностью находить ее значения в промежуточных точках. Табличным заданием функций часто пользуются и в математике: таблицы квадратов и кубов чисел, таблицы тригонометрических функций, таблицы логарифмов и т.д. С другой стороны, функции появляются также в графическом задании: например, приборы, регистрирующие температуру или атмосферное давление, часто снабжены самописцем, который выдаст показания прибора в виде графика зависимости измеряемого параметра от времени, изображаемого в определенной системе координат.