Рис. 7
Треугольник Рело, как и любая кривая постоянной ширины h, может вращаться внутри полосы ширины h, как в описанном механизме, постоянно касаясь обеих прямых, более того, он может вращаться внутри квадрата со стороной h, касаясь одновременно всех четырех его сторон.
А существуют ли такие выпуклые фигуры, которые могут вращаться внутри, скажем, равностороннего треугольника, постоянно касаясь всех его сторон? Одну такую фигуру вы знаете – это вписанный круг. А еще? Оказывается, таким свойством обладает пересечение двух кругов одинакового радиуса, расположенных так, что центр каждого из них лежит на границе другого (рис. 8). В отличие от круга, который при вращении продолжает касаться каждой прямой в одной и той же точке, этот двуугольник при вращении входит в соприкосновение последовательно и со всеми точками границы треугольника. Это его свойство позволило сконструировать механизм, позволяющий высверливать отверстия треугольной формы.
Рис. 8
ВЫПУКЛЫЕ ФУНКЦИИ
Важным характеризующим функцию свойством является монотонность (см. Возрастание и убывание функций). Однако этого свойства иногда оказывается недостаточно, чтобы описать ход изменения функции. На рис. 1 и 2 приведены графики монотонных функций, но они, как видим, различны. Форма графика первой функции, например, напоминает тяжелую нить, подвешенную в точках A и B, а форма второй – ветвь яблони, отягощенной плодами. Говорят, что функция, изображенная на рис. 1, выпукла вниз, а на рис. 2 – выпукла вверх. Точнее, функцию f(x), непрерывную на некотором промежутке X называют выпуклой вниз, если для любых точек x1 и x2 из промежутка X выполняется неравенство f ( (x1 + x2) /2 ) ≤ (f(x1) + f(x2)) /2 ).
Рис. 1
Рис. 2
Если для любых точек x1 и x2 из промежутка X справедливо неравенство f ( (x1 + x2) /2 ) ≥ (f(x1) + f(x2)) /2 ), то функцию f(x) называют выпуклой вверх (вогнутой). Эти неравенства имеют простой геометрический смысл. Точка с абсциссой (x1 + x2)/2 есть середина отрезка [x1; x2], а f( (x1 + x2)/2 )- ордината соответствующей точки кривой (рис. 3); значение ( f(x1) + f(x2) )/2 равно ординате точки C, лежащей на хорде MN. Таким образом, на отрезке [x1; x2] функция выпукла вниз, если точка, принадлежащая графику функции, лежит ниже точки хорды MN (имеющей ту же абсциссу) или на хорде MN. Функция выпукла вверх, если точка, принадлежащая графику функции, лежит выше точки хорды MN (имеющей ту же абсциссу) или на хорде MN.
Рис. 3
Исследования функции на выпуклость очень удобно проводить средствами математического анализа.
Как известно, имеют место следующие теоремы анализа:
1) если дифференцируемая функция выпукла вниз на промежутке X, то ее график расположен над касательной, проведенной в любой точке графика, а график дифференцируемой функции, выпуклой вверх, расположен под касательной, проведенной в любой точке графика (рис. 4 и 5);
Рис. 4
Рис. 5
2) если функция f(x) дважды дифференцируема на промежутке X, то она выпукла вниз, когда ее вторая производная f"(x) неотрицательна на этом промежутке: f"(x) ≥ 0, и выпукла вверх, когда ее вторая производная f"(x) неположительна: f"(x) ≤ 0. Это легко запомнить, если представить себе, что капли, падающие на выпуклую вниз кривую, «скапливаются» на ней, а падающие на выпуклую вверх кривую - «скатываются» с нее (рис. 6).
Рис. 6
Так, функция y=x2 всюду выпукла вниз, поскольку y' = 2x и y" = 2>0 для всех x. Функция y = ln x выпукла вверх на промежутке ]0; +∞[, так как
y' = 1/x, y" = -1/x2 < 0.
Рассмотрим график функции y = sin x на отрезке [-π;π] (рис. 7). Ее первая и вторая производные: y' = cos x, y" = -sin x. На интервале ]-π; 0[ вторая производная положительна (так как sin x < 0), кривая выпукла вниз; напротив, на интервале ]0;π[ вторая производная отрицательна (здесь sin x > 0), кривая выпукла вверх.