Выбрать главу

Рис. 1

Рис. 2

ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

Геометрическое преобразование плоскости - взаимно-однозначное отображение этой плоскости на себя. Наиболее важными геометрическими преобразованиями являются движения, т.е. преобразования, сохраняющие расстояние. Иначе говоря, если f - движение плоскости, то для любых двух точек A,B этой плоскости расстояние между точками f(A) и f(B) равно |AB|.

Движения связаны с понятием равенства (конгруэнтности) фигур: две фигуры F и G плоскости а называются равными, если существует движение этой плоскости, переводящее первую фигуру во вторую. Фактически это определение использовал еще Евклид (см. Геометрия), называвший две фигуры равными, если одну из них можно наложить на другую так, чтобы они совпали всеми своими точками; под наложением здесь следует понимать перекладывание фигуры как твердого целого (без изменения расстояний), т.е. движение.

Примерами движений плоскости являются осевая и центральная симметрия, параллельный перенос, поворот. Как пример, напомним определение параллельного переноса. Пусть  - некоторый вектор плоскости α. Геометрическое преобразование, переводящее каждую точку A ∈ α в такую точку A' что  (рис. 1), называется параллельным переносом на вектор . Параллельный перенос является движением: если точки A и B переходят в A' и B', т.е. , , то , и потому |A'B'| = |AB|.

Рис. 1

При решении геометрических задач с помощью движений часто применяется свойство сохранения пересечения: при любом движении f пересечение фигур переходит в пересечение их образов, т.е. если P,Q - произвольные фигуры, то фигура P ∩ Q переходит в результате движения f в фигуру f(P) ∩ f(Q). (Аналогичное свойство справедливо для объединения.)

Задача 1. Окружность, центр которой принадлежит биссектрисе угла, пересекает его стороны в точках A,B,C и D (рис. 2). Доказать, что |AB|=|CD|.

Рис. 2

Решение. Обозначим через P одну из сторон угла, а через Q - круг, границей которого является рассматриваемая окружность. При симметрии s относительно биссектрисы угла луч P переходит в луч P', который образует вторую сторону угла, а круг Q переходит в себя: s(P) = P', s(Q) = Q. Согласно свойству сохранения пересечения фигура P ∩ Q переходит в s(P) ∩ s(Q), т. е. в P'∩Q. Иначе говоря, отрезок AB переходит в отрезок CD, и потому |AB|=|CD|.

Задача 2. Через точку A, данную внутри угла (меньшего, чем развернутый), провести прямую, отрезок которой, заключенный между сторонами угла, делится в этой точке пополам.

Решение. Обозначим через z симметрию относительно точки A, а через P и Q - прямые, на которых лежат стороны угла (рис. 3). В результате симметрии z прямая P переходит в параллельную ей прямую P' которая пересекает вторую сторону угла в точке C. Так как C ∈ P', то точка D, симметричная C, принадлежит прямой, которая симметрична P', т.е. D ∈ P. Таким образом, точки D ∈ P и C ∈ Q симметричны относительно A, и потому отрезок CD делится в точке A пополам, т.е. прямая CD - искомая.

Рис. 3

Нетрудно понять, почему в задаче 1 была применена осевая, а в задаче 2 – центральная симметрия. Так как биссектриса угла – его ось симметрии, то попытка применить осевую симметрию в задаче 1 совершенно естественна (так же, как и применение центральной симметрии в задаче 2, поскольку отрезок CD должен делиться в точке A пополам, т.е. искомые точки C и D должны быть симметричными относительно точки A). И в других случаях анализ условия задачи позволяет найти движение, применение которого дает решение.