Геометрия изучает те свойства фигур, которые сохраняются при движениях. Иначе говоря, если одна фигура получается из другой движением (такие фигуры называются равными, или конгруэнтными), то у этих фигур одинаковые геометрические свойства. В этом смысле движения составляют основу геометрии. Они обладают тем свойством, что композиция g ∘ f любых двух движений f и g (т. е. результат их последовательного выполнения) также является движением; кроме того, если f - произвольное движение, то обратное отображение f-1 также является движением. Эти свойства коротко выражают следующим образом: движения образуют группу. Таким образом, группа движений задает, определяет евклидову геометрию. Но группа движений не единственная известная нам группа преобразований. Например, все параллельные переносы образуют группу, все подобные преобразования также образуют группу и т.д. По мысли Клейна, каждая группа преобразований определяет «свою геометрию». Например, можно рассматривать аффинные преобразования, которые каждую прямую взаимно-однозначно отображают на некоторую другую прямую, но при этом могут не сохранять (в отличие от движений) ни расстояний, ни углов, ни площадей. Множество всех аффинных преобразований плоскости (или пространства) представляет собой группу. Эта группа задает некоторую геометрию, которая носит название аффинной геометрии. Групповая точка зрения на геометрию позволяет с единых позиций рассмотреть многие различные геометрии: евклидову, геометрию Лобачевского, аффинную, проективную геометрию и др.
Значение идей Эрлангенской программы Клейна не исчерпывается рамками геометрии. Групповая точка зрения на геометрические свойства фигур широко используется в физике. Так, русский математик и кристаллограф Е. С. Федоров, используя клейновские идеи, открыл кристаллографические группы, носящие теперь его имя. Они стали в наши дни подлинной научной основой всей кристаллографии. Групповой подход находит важные применения в ядерной физике; принципы симметрии и четности – яркое проявление групповой точки зрения. Основой специальной теории относительности является группа Лоренца; по существу, эта теория представляет собой своеобразную геометрию «четырехмерного пространства – времени», определяемую группой Лоренца. Важные приложения находит групповая точка зрения и в других областях физики, химии.
Влияние группового подхода можно проследить и в школьной геометрии. Каждая фигура F определяет некоторую группу движений; в эту группу входят все те движения, которые переводят фигуру F в себя. Она называется группой самосовмещений фигуры F. Знание группы самосовмещений фигуры F во многом определяет геометрические свойства этой фигуры. Возьмем, например, параллелограмм общего вида, т.е. не являющийся ни прямоугольником, ни ромбом (рис. 1). Существуют два движения, переводящие этот параллелограмм в себя: тождественное отображение e (оставляющее все точки плоскости на месте) и симметрия r относительно точки O, в которой пересекаются диагонали параллелограмма. Других движений плоскости, переводящих параллелограмм F в себя, нет. Таким образом, группа самосовмещений параллелограмма состоит из двух элементов e,r. Из того, что группа самосовмещений параллелограмма содержит центральную симметрию r, вытекают все основные свойства параллелограмма. Например, так как противоположные углы параллелограмма симметричны относительно точки O, то эти углы равны. Из симметричности противоположных сторон параллелограмма вытекает, что эти стороны равны и параллельны, и т.д.
Рис. 1
«Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать». Г. Галилей
Группа самосовмещений ромба содержит кроме e и r еще две осевые симметрии s1 и s2 относительно прямых, на которых расположены диагонали ромба (рис. 2). Из того, что в этой группе имеются дополнительные (по сравнению с параллелограммом общего вида) движения s1 и s2, вытекает наличие у ромба дополнительных, специфических свойств (помимо свойств, присущих всякому параллелограмму): перпендикулярность диагоналей, совпадение диагоналей с биссектрисами углов и т.д. В качестве еще одного примера отметим, что группа самосовмещений равнобедренного треугольника, не являющегося равносторонним (рис. 3), состоит из двух элементов e,s, где s - осевая симметрия. Из наличия в группе самосовмещений равнобедренного треугольника движения s вытекают основные свойства этого треугольника: равенство углов при основании, совпадение биссектрисы, медианы и высоты, проведенных к основанию, равенство медиан, проведенных к боковым сторонам, и т.д. Свойства правильных многогранников (или других многогранников, обладающих той или иной симметричностью) удобнее всего доказывать, используя группы их самосовмещений. Свойства сферы, цилиндра, конуса также лучше всего выводить с помощью рассмотрения групп самосовмещений этих фигур. И для каждой конкретной геометрической фигуры богатство ее свойств определяется прежде всего ее группой самосовмещений.