Теперь мы можем вернуться к вопросу о том, что такое геометрия. Многомерные пространства, несомненно, относятся к области геометрии, поскольку в них математики рассматривают плоскости, прямые, векторы, углы, расстояния, скалярное произведение, перпендикулярность и т. д., т. е. подлинно геометрические понятия. Многомерные пространства и имеющиеся в них гиперплоскости, многогранники и т. п. нельзя назвать отражением пространственных форм реального мира. При всей практической значимости задач о раскрое материала, транспортных задач и т. д. порождаемые ими понятия многомерной геометрии являются лишь «пространственноподобными»; они похожи на то, что мы видим в реальном пространстве, но представляют собой следующую, более высокую ступень абстракции от пространственных форм реального трехмерного мира.
Понятия и факты геометрии постоянно применяются при решении практических задач. И дело не только в том, что, решая задачи по алгебре, математическому анализу или другим областям математики, мы часто делаем геометрические чертежи или используем формулы и теоремы геометрии. Гораздо важнее то, что, сопоставив алгебраические или иные формулы с геометрическими фактами, мы часто можем «увидеть» геометрически решение задачи и найти такие пути рассуждений, предугадать которые, глядя «чисто алгебраически» на нагромождение формул, просто не представляется возможным. Два приведенных выше примера иллюстрируют это. Вообще, характерной чертой современного развития математики является то, что геометрия все больше приобретает роль метода мышления, метода осмысления и организации математической информации буквально во всех областях математики и ее приложений.
ГЕРОНА ФОРМУЛА
Эта формула позволяет вычислить площадь S треугольника по его сторонам a,b и c:
,
где p - полупериметр треугольника, т.е. p = (a + b + c)/2. Формула названа в честь древнегреческого математика Герона Александрийского (около I в.). Герон рассматривал треугольники с целочисленными сторонами, площади которых также являются целыми числами. Такие треугольники называют героновыми. Например, это треугольники со сторонами 13, 14, 15 или 51, 52, 53.
Существуют аналоги формулы Герона для четырехугольников. В связи с тем что задача на построение четырехугольника по его сторонам a,b,c и d имеет не единственное решение, для вычисления в общем случае площади четырехугольника недостаточно только знания длин сторон. Приходится вводить дополнительные параметры или накладывать ограничения. Например, площадь вписанного четырехугольника находится по формуле:
.
Если же четырехугольник и вписанный, и описанный одновременно, его площадь находится
по более простой формуле: .
ГИПЕРБОЛА
Гипербола – одно из конических сечений. Ее также можно определить как фигуру, состоящую из всех тех точек M плоскости, разность расстояний которых до двух заданных точек F1 и F2, называемых фокусами гиперболы, постоянна. Обычно оно обозначается через 2a.
Прямая, проходящая через фокусы (рис. 1), и перпендикулярная ей прямая, равноотстоящая от фокусов, служат осями симметрии гиперболы, а точка их пересечения – ее центром симметрии, называемым также центром гиперболы. Если принять эти прямые за оси координат, выбрав в качестве оси абсцисс прямую, проходящую через фокусы F1(c,0) и F2(-c,0), то уравнение гиперболы запишется в виде:
x2/a2 - y2/b2 = 1, где .
Рис. 1
Точки (a,0) и (-a,0) называются вершинами гиперболы. Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат. Характерной ее особенностью является наличие асимптот – прямых