Выбрать главу

Доказательство. По аксиоме 2 игрок A участвует ровно в трех партиях, скажем q1, q2, q3. Это дает три выступления игрока: (q1,A), (q2,A), (q3,A). Отсюда следует, что число всех выступлений игроков равно 3n, где n - число игроков. Так как n нечетно (аксиома 1), то и 3n нечетно.

Таким образом, взятая аксиоматика позволяет доказать ряд теорем, однако среди них имеются две, противоречащие друг другу. Это означает, что такая аксиоматика противоречива, т.е. требования, выдвинутые организаторами турнира, несовместимы (рис. 1). Не удивительно, что мальчики не сумели составить расписание турнира: такого расписания просто не существует.

Рис. 1

После этого учитель предложил другую систему организации турнира, при которой каждый из участников должен сыграть не три, а четыре партии с кем-либо из остальных участников. Иначе говоря, он предложил рассмотреть «теорию», в которой те же первоначальные понятия, а аксиомы формулируются следующим образом:

Аксиома 1. Число игроков нечетно.

Аксиома 2. Каждый игрок участвует в четырех партиях.

Аксиома 3. В каждой партии участвуют два игрока.

Аксиома 4. Для каждых двух игроков имеется не более одной партии, в которой они оба участвуют.

«Так называемые аксиомы математики – это те немногие мыслительные определения, которые необходимы в математике в  качестве исходного пункта». Ф. Энгельс

Однако ученики не спешили выводить теоремы из этих аксиом: вдруг опять обнаружится противоречие. Учитель же заверил мальчиков, что, сколько бы теорем они ни выводили из этих аксиом, никогда противоречий не будет. Вот как он убедил их в этом.

Рассмотрим девятиугольник, в котором кроме сторон проведем девять диагоналей, соединяющих вершины через одну (рис. 2). Вершины девятиугольника будем считать «игроками», проведенные отрезки (стороны и диагонали) - «партиями», а концы соответствующего отрезка «игроками», участвующими в некоторой «партии». Мы получаем модель (или схему) интересующего нас турнира. Легко установить, что все четыре аксиомы здесь выполняются. Итак, удается построить модель, в которой выполняются все рассматриваемые аксиомы, причем эта модель построена из «материала» геометрии, т.е. науки, в непротиворечивости которой мы не сомневаемся.

Рис. 2

Предположим теперь, что из рассматриваемых четырех аксиом можно вывести две теоремы, противоречащие друг другу. Тогда доказательства этих двух теорем можно было бы повторить и в построенной модели (ведь в этой модели все четыре аксиомы имеют место). В результате получается, что, рассуждая о правильном девятиугольнике, мы можем получить две противоречащие друг другу теоремы. Но это означало бы, что геометрия - наука противоречивая, чего мы не допускаем. Таким образом, мы должны признать, что двух противоречащих друг другу теорем вывести из рассматриваемых четырех аксиом невозможно.

Вообще, пусть рассматриваются две теории P и Q, причем теория P задается аксиоматически (и в ее непротиворечивости мы заранее не уверены), а Q - это хорошо известная нам теория, в непротиворечивости которой мы не сомневаемся. Если из «материала» теории Q удается построить модель, в которой выполняются все аксиомы теории P, то этим непротиворечивость теории P будем считать установленной.

Именно с помощью построения моделей в современной математике установлена непротиворечивость геометрии в предположении непротиворечивости теории действительных чисел. Далее, установлена непротиворечивость теории действительных чисел – в предположении непротиворечивости теории рациональных чисел; наконец, установлена непротиворечивость теории рациональных чисел – в предположении непротиворечивости теории натуральных чисел.

АЛГЕБРА

Алгебра - часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями. Решим задачу: «Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев?» Обозначив искомое число лет через x, составим уравнение: 30 + x = (20 + x) + (60 + x), откуда x = 4. Близкий к описанному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям первой степени с одним неизвестным, как в задаче о возрасте братьев, но и задачи, приводящие к уравнениям вида ax2 = b (см. Квадратные уравнения).